Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (11)Каталог журналов библиотеки ИФ СО РАН (2)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Nanostructures<.>)
Общее количество найденных документов : 175
Показаны документы с 1 по 20
 1-20    21-40   41-60   61-80   81-100   101-120      
1.


   
    A way for targeted synthesis of higher manganese silicides: a new Mn17Si30 phase and its distinctive features / I. A. Tarasov [et al.] // Nanostructures: physics and technology : proc. 26th Int. symp. - 2018. - P. 209-210. - Cited References: 3 . - ISBN 978-985-7202-35-5

Материалы конференции

Доп.точки доступа:
Tarasov, I. A.; Тарасов, Иван Анатольевич; Visotin, M. A.; Высотин, Максим Александрович; Solovyov, L. A.; Соловьев, Леонид Александрович; Fedorov, A. S.; Федоров, Александр Семенович; Yakovlev, I. A.; Яковлев, Иван Александрович; Tarasov, A. S.; Тарасов, Антон Сергеевич; Varnakov, S. N.; Варнаков, Сергей Николаевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Nanostructures: Physics and Technology, International Symposium(26 ; 2018 ; June ; 18-22 ; Minsk, Belarus); Институт физики им. Б. И. Степанова НАН Беларуси; Санкт-Петербургский национальный исследовательский Академический университет Российской академии наук; Физико-технический институт им. А.Ф. Иоффе РАН; Научно-технологический центр микроэлектроники и субмикронных гетероструктур Российской академии наук
}
Найти похожие
2.


   
    Adsorption properties and catalytic activity of Fe3O4-Ag nanostructures / O. S. Ivanova, Ch.-R. Lin, I. S. Edelman [et al.] // Appl. Surf. Sci. - 2024. - Vol. 665. - Ст. 160236, DOI 10.1016/j.apsusc.2024.160236. - Cited References: 48. - The work is supported by the Russian Science Foundation (project no. 23-22-10025, https://rscf.ru/project/ 23-22-10025/) and by the Krasnoyarsk Regional Fund of Science and Technology Support. The electron microscopy and EDS investigations were conducted in the SFU Joint Scientific Center. Magnetic investigations were carried out in the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS" . - ISSN 0169-4332. - ISSN 1873-5584
Кл.слова (ненормированные):
FeO-Ag nanostructures -- Nano-adsorbents -- Water purification methods -- Catalytic activity of nanoparticles
Аннотация: The morphology and magnetic properties as well as adsorption capacity and catalytic activity of Fe3O4-Ag nanoparticles synthesized by the solvothermal method were studied in dependence on the duration of the thermolysis process (3, 6, and 8 h). X-ray diffraction, transmission electron microscopy, and energy-dispersive spectroscopy measurements showed that the morphology of nanoparticles changed strongly as the duration of thermolysis increased. At 6 and 8 h duration, Fe3O4 nanocrystals grow and assemble into porous spherical globules with an Ag core (samples 2 and 3). These samples demonstrate high magnetization value and very low coercivity. The adsorption capacity of nanoparticles was studied with respect to two organic dyes: cationic methylene blue (MB) and anionic Congo red (CR). The particles showed preferential adsorption of the cationic dye. High catalytic activity towards four dyes: MB, methyl orange (MO), CR, and Rhodamine C (RhC) at the presence of NaBH4 is the remarkable property of these samples. The rate constant of the catalytic reaction was 1.4 min−1. Simultaneous exposure of CR and MO dyes to nanoparticles and NaBH4 caused their irreversible 100 % degradation while in the case of MB and RhC, a transition to their leuco form occurred.

Смотреть статью
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
Siberian Federal University, Krasnoyarsk 660041, Russia
Department of Applied Physics, National Pingtung University, Pingtung City 90003, Taiwan
Institute of Chemistry and Chemical Technology, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Ivanova, O. S.; Иванова, Оксана Станиславовна; Lin, Chun-Rong; Edelman, I. S.; Эдельман, Ирина Самсоновна; Svetlitsky, E. S.; Светлицкий, Евгений Сергеевич; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Zharkov, S. M.; Жарков, Сергей Михайлович; Sukhachev, A. L.; Сухачев, Александр Леонидович; Vorobyev, S. A.; Petrov, D. A.; Петров, Дмитрий Анатольевич; Lin, En-Szu
}
Найти похожие
3.


   
    All-dielectric photonic crystal microcavity with electrically tunable Q-factor / A. I. Krasnov, P. S. Pankin, D. S. Buzin [et al.] // 9th International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures : book of abstracts. - Saint-Petersburg, 2022. - Cited References: 3
   Перевод заглавия: Полностью диэлектрический фотоннокристаллический микрорезонатор с электрически управляемой добротностью

Держатели документа:
Kirensky Institute of Physics, Krasnoyarsk 660036, Russia
Siberian Federal University, Krasnoyarsk 660041, Russia
Siberian State University of Science and Technology, Krasnoyarsk 660037, Russia
AO NPP Radiosvyaz, 660021 Krasnoyarsk, Russia

Доп.точки доступа:
Krasnov, A. I.; Pankin, P. S.; Панкин, Павел Сергеевич; Buzin, D. S.; Romanenko, G. A.; Sutormin, V. S.; Сутормин, Виталий Сергеевич; Nabol, S. V.; Zelenov, F. V.; Masyugin, A. N.; Ветров, Степан Яковлевич; Vetrov, S. Ya.; Timofeev, I. V.; Тимофеев, Иван Владимирович; International School and Conference on optoelectronics, photonics, engineering and nanostructures(9 ; 2022 ; 24-27 May ; Saint Petersburg); Высшая школа экономики, НИУ; Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук
}
Найти похожие
4.


   
    Analysis of the structure and magnetic properties of an interface in multilayered (Fe/Si) N nanostructures with the surface-sensitive XMCD method / M. S. Platunov [et al.] // JETP Letters. - 2014. - Vol. 99, Is. 12. - P. 706-711, DOI 10.1134/S002136401412011X. - Cited References: 26. - We are grateful to S.V. Komogortsev for stimulating discussions and to the management of BESSY II, Helmholtz-Zentrum Berlin, for the opportunity of performing experiments at the UE46-PGM1 beamline. This work was supported by the Russian Foundation for Basic Research (project nos. 13-02-01265a and 14-02-31051mol-a), by the Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (project no. NSh- 2886.2014.2), by the Presidium of the Russian Academy of Sciences (program no. 24.34), and by the Ministry of Education and Science of the Russian Federation (state contract no. 02.G25.31.0043 and state task for research at Siberian Federal University in 2014). . - ISSN 0021-3640. - ISSN 1090-6487
РУБ Physics, Multidisciplinary
Рубрики:
RAY CIRCULAR-DICHROISM
   YIELD

   SPECTRA

   Fe

Аннотация: The structural and magnetic properties of (Fe/Si) N nanostructures obtained by successive deposition on the SiO2/Si(100) surface at a temperature of the substrate of 300 K have been studied. The thicknesses of all Fe and Si layers have been determined by transmission electron microscopy measurements. The magnetic properties have been studied by the X-ray magnetic circular dichroism (XMCD) method near the Fe L 3, 2 absorption edges. The orbital (m l ) and spin (m S ) contributions to the total magnetic moment of iron have been separated. The thicknesses of magnetic and nonmagnetic iron silicide on the Si/Fe and Fe/Si interfaces have been determined with the surface sensitivity of the XMCD method and the model of the interface between the nonmagnetic and weakened magnetic phases.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Анализ структуры и магнитных свойств интерфейса в многослойных наноструктурах (Fe/Si)N с применением поверхностно-чувствительного метода XMCD [Текст] / М. С. Платунов [и др.] // Письма в Журн. эксперим. и теор. физ. - 2014. - Т. 99 Вып. 11-12. - С. 817-823

Держатели документа:
Russian Acad Sci, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
Siberian Fed Univ, Krasnoyarsk 660041, Russia
Siberian State Aerosp Univ, Krasnoyarsk 660014, Russia
Helmholtz Zentrum Berlin, BESSY II, D-12489 Berlin, Germany

Доп.точки доступа:
Platunov, M. S.; Платунов, Михаил Сергеевич; Varnakov, S. N.; Варнаков, Сергей Николаевич; Zharkov, S. M.; Жарков, Сергей Михайлович; Bondarenko, G. V.; Бондаренко, Геннадий Васильевич; Weschke, E.; Schierle, E.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Russian Foundation for Basic Research [13-02-01265a, 14-02-31051mol-a]; Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools [NSh- 2886.2014.2]; Presidium of the Russian Academy of Sciences [24.34]; Ministry of Education and Science of the Russian Federation [02.G25.31.0043]
}
Найти похожие
5.


   
    Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal / I. V. Nemtsev [et al.] // Photonics Nanostruc. Fundam. Appl. - 2018. - Vol. 28. - P. 37-44, DOI 10.1016/j.photonics.2017.11.007. - Cited References: 72. - This study was supported by the Russian Foundation for Basic Research (Grant No. 16-32-00302 мол_а ), by the Council for Grants of the President of the Russian Federation ( SP-317.2015.1 ), by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund to the research project No. 16-42-243059 р_мол_а and No. 16-48-242092 р_офи_м, and by the Program of Foundation for Promotion of Small Enterprises in Science and Technology (No.6662ГУ2015) (“УМНИК” program). We acknowledge the support of Krasnoyarsk Regional Center for Collective Use of SB of RAS for equipment and technique. We thank A. V. Shabanov and O. V. Shabanova for assistance in dispersion preparation. We also thank V. G. Myagkov for useful discussion of the results. . - ISSN 1569-4410
Кл.слова (ненормированные):
PMMA opal -- Photonic crystal -- Electron microscopy -- Angular resolved reflective spectroscopy
Аннотация: PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400–1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg–Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Federal Research Centre Krasnoyarsk Scientific Center of the Siberian Branch of Russian Academy of Sciences, Akademgorodok 50, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Centre Krasnoyarsk Scientific Center of the Siberian Branch of Russian Academy of Sciences, Akademgorodok 50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Nemtsev, I. V.; Немцев, Иван Васильевич; Tambasov, I. A.; Тамбасов, Игорь Анатольевич; Ivanenko, A. A.; Иваненко, Александр Анатольевич; Zyryanov, V. Ya.; Зырянов, Виктор Яковлевич
}
Найти похожие
6.


   
    Arc synthesis of silicon-doped heterofullerenes in plasma at atmospheric pressure / N. V. Bulina [et al.] // Fullerenes Nanotubes and Carbon Nanostructures. - 2007. - Т. 15, № 5. - С. 395-400, DOI 10.1080/15363830701512229 . - ISSN 1536-383X. - ISSN 1536-4046
ГРНТИ


РИНЦ
Держатели документа:
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences
Max-Planck-Institut fur Kernphysik
Доп.точки доступа:
Bulina, N. V.; Булина, Наталья Васильевна; Lopatin, V. A.; Лопатин, Владислав Александрович; Vnukova, N. G.; Внукова, Наталья Григорьевна; Osipova, I. V.; Осипова, Ирина Владимировна; Churilov, G. N.; Чурилов, Григорий Николаевич; Krtschmer, W.
}
Найти похожие
7.


   
    Atypical quantum confinement effect in silicon nanowires / P. B. Sorokin [et al.] // J. Phys. Chem. A. - 2008. - Vol. 112, Is. 40. - P9955-9964, DOI 10.1021/jp805069b. - Cited Reference Count: 25. - Гранты: This work was in part partially supported by a CREST (Core Research for Evolutional Science and Technology) grant in the Area of High Performance Computing for Multiscale and Multiphysics Phenomena from the Japan Science and Technology Agency (JST) as well as by Russian Fund of Basic Researches (grant 08-02-01096) (L.A.C.). P.V.A. acknowledges the encouragement of Dr. Keiji Morokuma, Research Leader at Fukui Institute for Fundamental Chemistry. The geometry of all presented structures was visualized by ChemCraft software.SUP25/SUP L.A.C. acknowledges I. V. Stankevich for help and fruitful discussions. P.B.S. is grateful to the Joint Supercomputer Center of the Russian Academy of Sciences for access to a cluster computer for quantum-chemical calculations. - Финансирующая организация: Japan Science and Technology Agency (JST); Russian Fund of Basic Researches [08-02-01096] . - OCT 9. - ISSN 1089-5639
Рубрики:
ELECTRONIC-STRUCTURE
   OPTICAL-PROPERTIES

   SI

   DENSITY

   WIRES

   EXCHANGE

   ATOMS

   DOTS

Кл.слова (ненормированные):
Electric wire -- Energy gap -- Gallium alloys -- Mathematical models -- Nanostructured materials -- Nanostructures -- Nanowires -- Quantum confinement -- Quantum electronics -- Semiconductor quantum dots -- Silicon -- Ami methods -- Band gaps -- Blue shifts -- Dinger equations -- Linear junctions -- Monotonic decreases -- Quantum confinement effects -- Quantum dots -- Semiempirical -- Silicon nanowires -- System sizes -- Theoretical models -- Nanocrystalline silicon -- nanowire -- quantum dot -- silicon -- article -- chemistry -- electron -- quantum theory -- Electrons -- Nanowires -- Quantum Dots -- Quantum Theory -- Silicon
Аннотация: The quantum confinement effect (QCE) of linear junctions of silicon icosahedral quantum dots (IQD) and pentagonal nanowires (PNW) was studied using DFT and semiempirical AM1 methods. The formation of complex IQD/PNW structures leads to the localization of the HOMO and LUMO on different parts of the system and to a pronounced blue shift of the band gap; the typical QCE with a monotonic decrease of the band gap upon the system size breaks down. A simple one-electron one-dimensional Schrodinger equation model is proposed for the description and explanation of the unconventional quantum confinement behavior of silicon IQD/PNW systems. On the basis of the theoretical models, the experimentally discovered deviations from the typical QCE for nanocrystalline silicon are explained.

WOS,
Scopus,
eLibrary
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia
LV Kirenskii Inst Phys, SB RAS, Krasnoyarsk 660036, Russia
RAS, N M Emanuel Inst Biochem Phys, Moscow 119334, Russia
Kyoto Univ, Fukui Inst Fundamental Chem, Kyoto 6068103, Japan
Natl Inst Adv Ind Sci & Technol, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan

Доп.точки доступа:
Sorokin, P. B.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Avramov, P. V.; Chernozatonskii, L.A.; Fedorov, D.G.
}
Найти похожие
8.


   
    Biocompatible nanostructures fabricated by Dip-Pen nanolithography / T. E. Smolyarova, A. S. Tarasov, A. V. Lukyanenko [et al.] // Molecular Therapy - Nucleic Acids : book of abstracts of the 1st Int. conf. "Aptamers in Russia 2019". - 2019. - Vol. 17, Suppl. 1. - P. 8-9

Материалы конференции

Доп.точки доступа:
Smolyarova, T. E.; Смолярова, Татьяна Евгеньевна; Tarasov, A. S.; Тарасов, Антон Сергеевич; Lukyanenko, A. V.; Лукьяненко, Анна Витальевна; Shanidze, L. V.; Шанидзе, Лев Викторович; Yakovlev, I. A.; Яковлев, Иван Александрович; Volkov, N. V.; Волков, Никита Валентинович; Aptamers in Russia, international conference(1 ; 2019 ; Aug. 27-30 ; Krasnoyarsk)
}
Найти похожие
9.


   
    Biosensors based on nanowire field effect transistors with Schottky contacts / T. E. Smolyarova [et al.] // J. Phys.: Conf. Ser. - 2019. - Vol. 1410. - Ст. 012013, DOI 10.1088/1742-6596/1410/1/012013. - Cited References: 29. - This study was supported by the Russian Foundation for Basic Research, project no. 18-32-00035 and supported in part by the Ministry of Education and Science of the Russian Federation and the Siberian Branch of the Russian Academy of Sciences, project II.8.70, and the Presidium of the Russian Academy of Sciences, Fundamental Research Program no. 32 «Nanostructures: Physics, Chemistry, Biology, Basics of Technologies». . - ISSN 1742-6588. - ISSN 1742-6596
РУБ Crystal growth and structural properties of semiconductor materials and nanostructures

Аннотация: A top-down nanofabrication approach was used to obtain silicon nanowires from silicon-on-insulator wafers using direct-write electron beam lithography and plasma-reactive ion etching. Fabricated with designed pattern silicon nanowires are 0.4, 0.8, 2 μm in width and 100 nm in height. The devices can be applied in future medical diagnostic applications as novel biosensors with detection principle based on the changes in electrical characteristics of the silicon nanowires functionalized with thiol-containing molecules.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Krasnoyarsk Science Center SB RAS, Krasnoyarsk 660036, Russia
Kirensky Institute of Physics, Krasnoyarsk 660036, Russia
Siberian Federal University, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Smolyarova, T. E.; Lukyanenko, A. V.; Лукьяненко, Анна Витальевна; Tarasov, A. S.; Тарасов, Антон Сергеевич; Shanidze, L. V.; Baron, F. A.; Барон, Филипп Алексеевич; Zelenov, F. V.; Зеленов, Ф. В.; Yakovlev, I. A.; Яковлев, Иван Александрович; Volkov, N. V.; Волков, Никита Валентинович; International School and Conference on optoelectronics, photonics, engineering and nanostructures(6 ; 2019 ; 22-25 April ; Saint Petersburg)
}
Найти похожие
10.


   
    Brownian dynamics of the self-assembly of complex nanostructures in the field of quasi-resonant laser radiation / V. S. Kornienko [et al.] // Photonics Nanostruc. Fundam. Appl. - 2019. - Vol. 35. - Ст. 100707, DOI 10.1016/j.photonics.2019.100707. - Cited References: 32. - The reported study was funded by Russian Science Foundation (Grant 18-72-00003 ). V.V. Slabko is grateful for the support from the Ministry of Education and Science of the Russian Federation (Grant 3.6341.2017/VU ). . - ISSN 1569-4410
Кл.слова (ненормированные):
Dipole-dipole interaction -- Laser field -- Brownian dynamics -- Self-assembly of nanostructures -- Colloidal crystals
Аннотация: Self-assembly of nanoparticles under the action of laser field can be an universal method for the formation of nanostructures with specific properties for application in sensorics and nanophotonics. For prognosis of the self-assembly processes, the model of movement of an ensemble of nanoparticles in a viscous media under the action of laser radiation with the account for interaction of laser-induced polarizations and Brownian dynamics is developed. This model is applied to the investigation of the self-assembly process of a triple of nanoparticles into three-particle structure with a predetermined geometry.Two specific cases of formation of nanostructure from a preliminarily formed pair of particles are studied: either for the pair fixed in space or from the unfixed pair of nanoparticles. The geometry of resulting nanostructures is shown to be determined by the polarization direction of laser radiation and the laser wavelength. Under proper choice of these parameters the formation of structures is shown to be highly efficient. E. g., maximum probability of structures formation is as hig as 36–46% per single laser pulse of 10 ns duration. © 2019 Elsevier B.V.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Department of Computational Mathematics, Institute of Computational Modeling of Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kornienko, V. S.; Tsipotan, A. S.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Slabko, V. V.
}
Найти похожие
11.


   
    Characterization and magnetic properties of the magnetic nanoparticles and nanostructures / S. G. Ovchinnikov, I. S. Edelman, S. N. Varnakov [et al.] // International Symposium on Nanoscience and Technology. - 2011


Доп.точки доступа:
Ovchinnikov, S.G.; Edelman, I.S.; Varnakov, S.N.; Saranin, A.A.; Tereshenko, O.E.; International Symposium on Nanoscience and Technology(2011 ; Nov. ; 18-19 ; Tainan, Taiwan)
}
Найти похожие
12.


   
    Char­acterization and physical properties of the iron silicide nanostructures [Text] / S. G. Ovchinnikov, S. N. Varnakov, A. S. Fedorov [et al.] // 19th International symposium "Nanostructures: physics and technology" : proceeding. - 2011. - Ст. SRPN.17p. - P55-56. - This work was supported by project 4.1 of the OFN RAS, project 27.10 of the Presidium RAS, integration project 22 of SBRAS and DVO RAS, the FCP NK-179P/GK P1464. . - ISBN 978-5-93634-042-0

Материалы конференции,
Читать в сети ИФ

Доп.точки доступа:
Ovchinnikov, S.G.; Varnakov, S.N.; Fedorov, A.S.; Lyaschenko, S.A.; Yakovlev, I.A.; "Nanostructures: physics and technology", International symposium(19 ; 2011 ; June ; 20-25 ; Ekaterinburg, Russia, June); Институт физики им. Б. И. Степанова НАН Беларуси; Санкт-Петербургский национальный исследовательский Академический университет Российской академии наук; Физико-технический институт им. А.Ф. Иоффе РАН; Научно-технологический центр микроэлектроники и субмикронных гетероструктур Российской академии наук
}
Найти похожие
13.


    Chernozatonskii, L. A.
    Two-dimensional semiconducting nanostructures based on single graphene sheets with lines of adsorbed hydrogen atoms / L. A. Chernozatonskii, P. B. Sorokin, J. W. Bruning // Appl. Phys. Lett. - 2007. - Vol. 91, Is. 18. - Ст. 183103, DOI 10.1063/1.2800889. - Cited References: 24 . - ISSN 0003-6951
РУБ Physics, Applied
Рубрики:
CARBON
   GAS

Кл.слова (ненормированные):
Electronic properties -- Energy gap -- Graphite -- Hydrogen -- Semiconductor materials -- Superlattices -- Electronic spectra -- Graphene sheets -- Quasi-two-dimensional heterostructures -- Semiconducting nanostructures -- Nanostructured materials
Аннотация: It is shown that lines of adsorbed hydrogen pair atoms divide the graphene sheet into strips and form hydrogen-based superlattice structures (2HG-SL). We show that the formation of 2HG-SL changes the electronic properties of graphene from semimetal to semiconductor. The electronic spectra of "zigzag" (n,0) 2HG-SL is similar to that of (n,0) carbon nanotubes and have a similar oscillation of band gap with n, but with nonzero minimal values. The composite dual-periodic (n,0)+(m,0) 2HG-SLs of zigzag strips are analyzed, with the conclusion that they may be treated as quasi-two-dimensional heterostructures. (C) 2007 American Institute of Physics.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Emanuel Inst Biochem Phys, Moscow 119334, Russia
Siberian Fed Univ, Krasnoyarsk 660041, Russia
Russian Acad Sci, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
Humboldt Univ, Math Inst, D-12489 Berlin, Germany
ИФ СО РАН
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosigina St., Moscow 119334, Russian Federation
Siberian Federal University, 79 Svobodny Ave., Krasnoyarsk 660041, Russian Federation
Kirensky Institute of Physics, Russian Academy of Sciences, Academgorodok, Krasnoyarsk 660036, Russian Federation
Institute of Mathematics, Humboldt University of Berlin, Berlin 12489, Germany

Доп.точки доступа:
Sorokin, P. B.; Bruning, J. W.
}
Найти похожие
14.


    Churilov, G. N.
    Synthesis of fullerenes and other nanomaterials in arc discharge / G. N. Churilov // Fullerenes Nanotubes and Carbon Nanostructures. - 2008. - Т. 16, № 5-6. - P395-403, DOI 10.1080/15363830802281641 . - ISSN 1536-383X. - ISSN 1536-4046
ГРНТИ


РИНЦ
Держатели документа:
Kirensky Institute of Physics,Siberian Branch,Russian Academy of Science
L.V. Kirensky Institute of Physic
Доп.точки доступа:
Чурилов, Григорий Николаевич
}
Найти похожие
15.


   
    Co-Cu Alloys synthesized by mechanical alloying from the powder precursors with excess enthalpy [Text] / Kuzovnikova , E. A. Denisova [et al.] // Physics, Chemistry and Application of nanostructures : Proceedings of the International conference "Nanomeeting - 2009" : Reviews and short notes / ред.: V. E. Borisenko, S. V. Gaponenko, V. S. Gurin. - 2009. - P. 272-275

РИНЦ,
Источник статьи
Держатели документа:
Institute of Chemistry and Chemical Technology SB RAS
L. V. Kirensky Institute of Physics

Доп.точки доступа:
Borisenko, V. E. \ред.\; Gaponenko, S. V. \ред.\; Gurin, V. S. \ред.\; Kuzovnikova, L. A.; Кузовникова, Людмила Александровна; Denisova, E. A.; Денисова, Елена Александровна; Komogortsev, S. V.; Комогорцев, Сергей Викторович; Balaev, A. D.; Балаев, Александр Дмитриевич; Mal'tsev, V. K.; Мальцев, Вадим Константинович; Bondarenko, G.N.; "Physics, Chemistry and Application of nanostructures", International conference(2009 ; May ; 26-29 ; Minsk, Belarus)
}
Найти похожие
16.


   
    CoC films sinthezited whis arabinogalactan / S. V. Stolyar, R. N. Yaroslavtsev, L. A. Chekanova [et al.] // Nanostructures: physics and technology : proc. 28th Int. symp. - 2020. - Ст. NT.19. - P. 105-106. - Cited References: 1 . - ISBN 978-5-93634-066-6

Материалы конференции,
Читать в сети ИФ

Доп.точки доступа:
Stolyar, S. V.; Столяр, Сергей Викторович; Yaroslavtsev, R. N.; Ярославцев, Роман Николаевич; Chekanova, L. A.; Чеканова, Лидия Александровна; Komogortsev, S. V.; Комогорцев, Сергей Викторович; Cheremiskina, E. V.; Neznakhin, D. S.; Iskhakov, R. S.; Исхаков, Рауф Садыкович; Nanostructures: Physics and Technology, International Symposium(28 ; 2020 ; 28 Sept.-2 Oct. ; Minsk, Belarus); Институт физики им. Б. И. Степанова НАН Беларуси; Санкт-Петербургский национальный исследовательский Академический университет Российской академии наук; Физико-технический институт им. А.Ф. Иоффе РАН; Научно-технологический центр микроэлектроники и субмикронных гетероструктур Российской академии наук
}
Найти похожие
17.


   
    Collective resonances in hybrid photonic-plasmonic nanostructures / A. E. Ershov [et al.] // International Conference on Metamaterials and Nanophotonics (METANANO 2019). - St. Petersburg, 2019

Материалы конференции,
Материалы конференции

Доп.точки доступа:
Ershov, A. E.; Ершов, Александр Андреевич; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Rasskazov, I. L.; Рассказов, Илья Леонидович; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Timofeev, I. V.; Тимофеев, Иван Владимирович; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; International Conference on Metamaterials and Nanophotonics(4 ; 2019 ; July ; 15-19 ; Saint Peresburg); Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики
}
Найти похожие
18.


   
    Collective lattice resonances in all-dielectric nanostructures under oblique incidence / A. D. Utyushev, V. I. Zakomirnyi, A. E. Ershov [et al.] // Photonics. - 2020. - Vol. 7, Is. 2. - Ст. 24, DOI 10.3390/PHOTONICS7020024. - Cited References: 70. - This research was funded by the RF Ministry of Science and Higher Education, the State contract with Siberian Federal University for scientific research and Russian Science Foundation project 19-72-00066 (investigation of finite size effects) . - ISSN 2304-6732
Кл.слова (ненормированные):
Collective lattice resonance -- Nanoparticle -- All-dielectric nanophotonics -- Mie resonance
Аннотация: Collective lattice resonances (CLRs) emerging under oblique incidence in 2D finite-size arrays of Si nanospheres have been studied with the coupled dipole model. We show that hybridization between the Mie resonances localized on a single nanoparticle and angle-dependent grating Wood-Rayleigh anomalies allows for the efficient tuning of CLRs across the visible spectrum. Complex nature of CLRs in arrays of dielectric particles with both electric dipole (ED) and magnetic dipole (MD) resonances paves a way for a selective and flexible tuning of either ED or MD CLR by an appropriate variation of the angle of incidence. The importance of the finite-size effects, which are especially pronounced for CLRs emerging for high diffraction orders under an oblique incidence has been also discussed.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Department of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Space Materials and Technology, Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
The Institute of Optics, University of Rochester, Rochester, NY 14627, United States

Доп.точки доступа:
Utyushev, A. D.; Zakomirnyi, V. I.; Ershov, A. E.; Gerasimov, V. S.; Karpov, S. V.; Карпов, Сергей Васильевич; Rasskazov, I. L.
}
Найти похожие
19.


   
    Collective resonances in hybrid photonic-plasmonic nanostructures / A. E. Ershov, R. G. Bikbaev, I. L. Rasskazov [et al.] // J. Phys.: Conf. Ser. - 2020. - Vol. 1461, Is. 1. - Ст. 012046DOI 10.1088/1742-6596/1461/1/012046. - Cited References: 11. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No. 18-42-240013); A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676)
Кл.слова (ненормированные):
Hybrid systems -- Plasmonics -- Time domain analysis -- 1-D photonic crystal -- Defect layers -- Nanodisks -- Periodic arrays -- Plasmonic nanostructures -- Rayleigh anomalies -- Spectral position -- Theoretical modeling -- Finite difference time domain method
Аннотация: We present the theoretical model to predict the spectral position of Rayleigh anomalies emerged in hybrid system consisting of periodic array of plasmonic nanodisks embeded into the middle of defect layer of 1D photonic crystal (PhC). The spectral positions of these new emerged Rayleigh anomalies agree well with the results of exact simulations with Finite-Difference Time-Domain (FDTD) method.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Optics, University of Rochester, Rochester, NY 14627, United States

Доп.точки доступа:
Ershov, A. E.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Rasskazov, I. L.; Gerasimov, V. S.; Timofeev, I. V.; Тимофеев, Иван Владимирович; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; International Conference on Metamaterials and Nanophotonics(4th ; 15 - 19 July 2019 ; St. Petersburg, Russian Federation)
}
Найти похожие
20.


   
    Comparative analysis of two methods for synthesis of fullerenes at different helium pressures / A. I. Dudnik, I. V. Osipova, N. S. Nikolaev, G. N. Churilov // Fuller. Nanotub. Carbon Nanostruct. - 2020. - Vol. 28, Is. 9. - P. 697-701, DOI 10.1080/1536383X.2020.1746281. - Cited References: 16. - The reported study was funded by RFBR according to the research project No 18-32-20011 . - ISSN 1536-383X. - ISSN 1536-4046
РУБ Chemistry, Physical + Nanoscience & Nanotechnology + Materials Science, Multidisciplinary + Physics, Atomic, Molecular & Chemical
Рубрики:
PLASMA
   YIELD

   DISCHARGE

   PARAMETERS

   DEPENDENCE

   C60

Кл.слова (ненормированные):
Fullerene synthesis -- alternating current -- direct current
Аннотация: The results of the effect of helium pressure in the chamber on the amount and composition of the produced fullerenes (C60, C70, etc.) synthesized in the arc plasma with graphite electrodes are presented. The findings obtained when the arc is powered by a direct (DC) and alternating (AC) currents of low frequency were compared in the same chamber with the electrodes located at the same angle to each other. These two methods are drastically different. The complete conversion of graphite into fullerene soot in AC occurs, but a part of the graphite is converted into a cathode deposit that does not contain fullerenes in DC, the relative amount of which increases when decreasing the helium pressure in the chamber. The highest fullerene content in fullerene soot of 10.2 wt.% is produced at a pressure of 127.5 kPa in AC arc, but in DC arc, the highest content of fullerenes in fullerene soot of 8.3 wt.% is produced at a pressure of 33.3 kPa.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
RAS, SB, Fed Res Ctr KSC, Kirensky Inst Phys, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Dudnik, A. I.; Дудник, Александр Иванович; Osipova, I. V.; Осипова, Ирина Владимировна; Nikolaev, N. S.; Николаев, Никита Сергеевич; Churilov, G. N.; Чурилов, Григорий Николаевич; RFBRRussian Foundation for Basic Research (RFBR) [18-32-20011]
}
Найти похожие
 1-20    21-40   41-60   61-80   81-100   101-120      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)