Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=plasmonic<.>)
Общее количество найденных документов : 49
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-49 
1.


   
    Aptamer-targeted plasmonic photothermal therapy of cancer / O. S. Kolovskaya [et al.] // Mol. Ther. Nucl. Acids. - 2017. - Vol. 9. - P. 12-21, DOI 10.1016/j.omtn.2017.08.007. - Cited References: 8. - We thank Mr. Yousef Risha for improving the use of English in the manuscript and Mr. George Y. Vorogeikin, Mr. Yuri I. Vorogeikin, and “OKB ART” for the infrared imaging. This research is supported by Ministry of Education and Science Federal Target Program #14.607.21.0104 (RFMEFI60714X0104). . - ISSN 2162-2131
Аннотация: Novel nanoscale bioconjugates combining unique plasmonic photothermal properties of gold nanoparticles (AuNPs) with targeted delivery using cell-specific DNA aptamers have a tremendous potential for medical diagnostics and therapy of many cell-based diseases. In this study, we demonstrate the high anti-cancer activity of aptamer-conjugated, 37-nm spherical gold nanoparticles toward Ehrlich carcinoma in tumor-bearing mice after photothermal treatment. The synthetic anti-tumor aptamers bring the nanoparticles precisely to the desired cells and selectively eliminate cancer cells after the subsequent laser treatment. To prove tumor eradication, we used positron emission tomography (PET) utilizing radioactive glucose and computer tomography, followed by histological analysis of cancer tissue. Three injections of aptamer-conjugated AuNPs and 5 min of laser irradiations are enough to make the tumor undetectable by PET. Histological analysis proves PET results and shows lower damage of healthy tissue in addition to a higher treatment efficiency and selectivity of the gold nanoparticles functionalized with aptamers in comparison to control experiments using free unconjugated nanoparticles.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetskii, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
The Federal State-Financed Institution “Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency”, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
University of Ottawa, Department of Chemistry and Biomolecular Sciences, Ottawa, ON, Canada

Доп.точки доступа:
Kolovskaya, O. S.; Коловская, О. С.; Zamay, T. N.; Замай, Т. Н.; Belyanina, I. V.; Karlova, E. A.; Garanzha, I. V.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Kirichenko, A. K.; Dubinina, A. V.; Дубинина, А. В.; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Zamay, G. S.; Замай, Г. С.; Glazyrin, Y. E.; Глазырин, Ю. Е.; Zamay, S. S.; Замай, С. С.; Ivanchenko, T. I.; Chanchikova, N. G.; Tokarev, N. A.; Shepelevich, N. V.; Ozerskaya, A.V.; Bardin, E.; Belugin, K.; Belkin, S. A.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Gargaun, A.; Berezovski, M. V.; Kichkailo, A.S.; Кичкайло, Анна Сергеевна
}
Найти похожие
2.


   
    Collective resonances in hybrid photonic-plasmonic nanostructures / A. E. Ershov [et al.] // International Conference on Metamaterials and Nanophotonics (METANANO 2019). - St. Petersburg, 2019

Материалы конференции,
Материалы конференции

Доп.точки доступа:
Ershov, A. E.; Ершов, Александр Андреевич; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Rasskazov, I. L.; Рассказов, Илья Леонидович; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Timofeev, I. V.; Тимофеев, Иван Владимирович; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; International Conference on Metamaterials and Nanophotonics(4 ; 2019 ; July ; 15-19 ; Saint Peresburg); Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики
}
Найти похожие
3.


   
    Collective resonances in hybrid photonic-plasmonic nanostructures / A. E. Ershov, R. G. Bikbaev, I. L. Rasskazov [et al.] // J. Phys.: Conf. Ser. - 2020. - Vol. 1461, Is. 1. - Ст. 012046DOI 10.1088/1742-6596/1461/1/012046. - Cited References: 11. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No. 18-42-240013); A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676)
Кл.слова (ненормированные):
Hybrid systems -- Plasmonics -- Time domain analysis -- 1-D photonic crystal -- Defect layers -- Nanodisks -- Periodic arrays -- Plasmonic nanostructures -- Rayleigh anomalies -- Spectral position -- Theoretical modeling -- Finite difference time domain method
Аннотация: We present the theoretical model to predict the spectral position of Rayleigh anomalies emerged in hybrid system consisting of periodic array of plasmonic nanodisks embeded into the middle of defect layer of 1D photonic crystal (PhC). The spectral positions of these new emerged Rayleigh anomalies agree well with the results of exact simulations with Finite-Difference Time-Domain (FDTD) method.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Optics, University of Rochester, Rochester, NY 14627, United States

Доп.точки доступа:
Ershov, A. E.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Rasskazov, I. L.; Gerasimov, V. S.; Timofeev, I. V.; Тимофеев, Иван Владимирович; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; International Conference on Metamaterials and Nanophotonics(4th ; 15 - 19 July 2019 ; St. Petersburg, Russian Federation)
}
Найти похожие
4.


   
    Doping independent work function and stable band gap of spinel ferrites with tunable plasmonic and magnetic properties / N. Bhalla, S. Taneja, P. Thakur [et al.] // Nano Lett. - 2021. - Vol. 21, Is. 22. - P. 9780-9788, DOI 10.1021/acs.nanolett.1c03767. - Cited References: 41. - All authors would like to acknowledge support from EPSRC fund, award no. EP/R008841/1. Nikhil Bhalla wishes to thank Department of Economy, Northern Ireland, for supporting part of this work under GCRF Pump Priming Fund. Additionally, Atul Thakur and Preeti Thakur would like to acknowledge Gurujal, an initiative with district administration Gurugram for financial assistance from project no.176, Amity Incubation grant from the Ministry of Electronics and Information Technology (MeitY) under Technology Incubation and Development of Entrepreneurs (TIDE 2.0) program and the startup nanoLatticeX . - ISSN 1530-6984
Кл.слова (ненормированные):
plasmonics -- magnetic -- spinel -- ferrites -- atomic-doping -- MCD
Аннотация: Tuning optical or magnetic properties of nanoparticles, by addition of impurities, for specific applications is usually achieved at the cost of band gap and work function reduction. Additionally, conventional strategies to develop nanoparticles with a large band gap also encounter problems of phase separation and poor crystallinity at high alloying degree. Addressing the aforementioned trade-offs, here we report Ni–Zn nanoferrites with energy band gap (Eg) of ≈3.20 eV and a work function of ≈5.88 eV. While changes in the magnetoplasmonic properties of the Ni–Zn ferrite were successfully achieved with the incorporation of bismuth ions at different concentrations, there was no alteration of the band gap and work function in the developed Ni–Zn ferrite. This suggests that with the addition of minute impurities to ferrites, independent of their changes in the band gap and work function, one can tune their magnetic and optical properties, which is desired in a wide range of applications such as nanobiosensing, nanoparticle based catalysis, and renewable energy generation using nanotechnology.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ,
Читать в сети ИФ
Держатели документа:
Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, Jordanstown, BT37 0QB, United Kingdom
Healthcare Technology Hub, Ulster University, Shore Road, Jordanstown, BT37 0QB, United Kingdom
Department of Physics, Amity University Haryana, Haryana, Gurugram, 122413, India
Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
L.V. Kirensky Institute of Physics, Siberian Branch of RAS, Krasnoyarsk, 660036, Russian Federation
Amity Institute of Nanotechnology, Amity University Haryana, Haryana, Gurugram, 122413, India

Доп.точки доступа:
Bhalla, N.; Taneja, S.; Thakur, P.; Sharma, P. K.; Mariotti, D.; Maddi, C.; Ivanova, O. S.; Иванова, Оксана Станиславовна; Petrov, D. A.; Петров, Дмитрий Анатольевич; Sukhachev, A. L.; Сухачев, Александр Леонидович; Edelman, I. S.; Эдельман, Ирина Самсоновна; Thakur, A.
}
Найти похожие
5.


   
    Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields / A. E. Ershov [et al.] // Chin. Phys. B. - 2015. - Vol. 24, Is. 4. - Ст. 047804, DOI 10.1088/1674-1056/24/4/047804. - Cited References:25. - Project supported by the Russian Academy of Sciences (Grant Nos. 24.29, 24.31, III.9.5, 43, SB RAS-SFU (101), and 3-9-5). . - ISSN 1674. - ISSN 1741-4199. -
РУБ Physics, Multidisciplinary
Рубрики:
METAL NANOPARTICLES
   GOLD NANOPARTICLES

   OPTICAL-PROPERTIES

Кл.слова (ненормированные):
nanoparticle -- surface plasmon -- colloid aggregate -- optodynamics
Аннотация: Interactions of pulsed laser radiation with resonance domains of multiparticle colloidal aggregates having an increasingly complex local environment are studied via an optodynamic model. The model is applied to the simplest configurations, such as single particles, dimers, and trimers consisting of mono- and polydisperse Ag nanoparticles. We analyze how the local environment and the associated local field enhancement by surrounding particles affect the optodynamic processes in domains, including their photomodification and optical properties.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, LV Kirensky Inst Phys, Krasnoyarsk 660036, Russia
Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk 660036, Russia
Siberian State Aerosp Univ, Krasnoyarsk 660014, Russia
Siberian Fed Univ, Krasnoyarsk 660028, Russia

Доп.точки доступа:
Ershov, A. E.; Ершов, Александр Евгеньевич; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Semina, P. N.; Семина, Полина Николаевна; Russian Academy of Sciences [24.29, 24.31, III.9.5, 43, SB RAS-SFU (101), 3-9-5]
}
Найти похожие
6.


   
    Endorsing a hidden plasmonic mode for enhancement of LSPR sensing performance in evolved metal–insulator geometry using an unsupervised machine learning algorithm / N. Bhalla, A. Thakur, I. S. Edelman, R. D. Ivantsov // ACS Phys. Chem. Au. - 2022. - Vol. 2, Is. 6. - P. 459-467, DOI 10.1021/acsphyschemau.2c00033. - Cited References: 35 . - ISSN 2694-2445
   Перевод заглавия: Обнаружение скрытой плазмонной моды для усиления локального поверхностного плазмонного резонанса (ЛППР). Увеличение чувствительности усовершенствованной геометрии металл-изолятор с использованием самообучающегося машинного алгоритма
Дескрипторы: LSPR -- Plasmonics -- PCA -- Deconvolution -- Sensors
Аннотация: Large-area nanoplasmonic structures with pillared metal–insulator geometry, also called nanomushrooms (NM), consist of an active spherical-shaped plasmonic material such as gold as its cap and silicon dioxide as its stem. NM is a geometry which evolves from its precursor, nanoislands (NI) consisting of aforementioned spherical structures on flat silicon dioxide substrates, via selective physical or chemical etching of the silicon dioxide. The NM geometry is well-known to provide enhanced localized surface plasmon resonance (LSPR) sensitivity in biosensing applications as compared to NI. However, precise optical phenomenon behind this enhancement is unknown and often associated with the existence of electric fields in the large fraction of the spatial region between the pillars of NM, usually accessible by the biomolecules. Here, we uncover the association of LSPR enhancement in such geometries with a hidden plasmonic mode by conducting magneto-optics measurements and by deconvoluting the absorbance spectra obtained during the local refractive index change of the NM and NI geometries. By the virtue of principal component analysis, an unsupervised machine learning technique, we observe an explicit relationship between the deconvoluted modes of LSPR, the differential absorption of left and right circular polarized light, and the refractive index sensitivity of the LSPR sensor. Our findings may lead to the development of new approaches to extract unknown properties of plasmonic materials or establish new fundamental relationships between less understood photonic properties of nanomaterials.

https://doi.org/10.1021/acsphyschemau.2c00033
Держатели документа:
Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown, Shore Road, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom
Healthcare Technology Hub, Ulster University, Jordanstown, Shore Road, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom
Amity Institute of Nanotechnology, Amity University Haryana, Gurugram, Haryana 122413, India
Kirensky Institute of Physics, FRC KSC Siberian Branch of Russian Academy of Sciences, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Bhalla, Nikhil; Thakur, Atul; Edelman, I. S.; Эдельман, Ирина Самсоновна; Ivantsov, R. D.; Иванцов, Руслан Дмитриевич
}
Найти похожие
7.


   
    Engineering mode hybridization in regular arrays of plasmonic nanoparticles embedded in 1D photonic crystal / V. S. Gerasimov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2019. - Vol. 224. - P. 303-308, DOI 10.1016/j.jqsrt.2018.11.028. - Cited References: 49. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No.18-42-240013); by the RF Ministry of Science and Higher Education, the State contract with Siberian Federal University for scientific research in 2017–2019 (Grant No.3.8896.2017); by the Russian Science Foundation (Project No. 18-13-00363 ) (numerical calculations of Rayleigh anomalies in planar structures and corresponding research). . - ISSN 0022-4073
   Перевод заглавия: Управляемая гибридизация мод двумерной решетки внедренной в одномерный фотонный кристалл
Кл.слова (ненормированные):
Surface lattice resonance -- Photonic crystal -- Optical cavity
Аннотация: We analytically and numerically study coupling mechanisms between 1D photonic crystal (PhC) and 2D array of plasmonic nanoparticles (NPs) embedded in its defect layer. We introduce general formalism to explain and predict the emergence of PhC-mediated Wood–Rayleigh anomalies, which spectral positions agree well with the results of exact simulations with Finite-Difference Time-Domain (FDTD) method. Electromagnetic coupling between localized surface plasmon resonance (LSPR) and PhC-mediated Wood–Rayleigh anomalies makes it possible to efficiently tailor PhC modes. The understanding of coupling mechanisms in such hybrid system paves a way for optimal design of sensors, light absorbers, modulators and other types of modern photonic devices with controllable optical properties.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Federal Siberian Research Clinical Centre under FMBA of Russia, Krasnoyarsk, 660037, Russian Federation
Polytechnic Institute, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
The Institute of Optics, University of Rochester, Rochester, NY 14627, United States
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation

Доп.точки доступа:
Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Ершов, Александр Евгеньевич; Bikbaev, R. G.; Rasskazov, I. L.; Timofeev, I. V.; Тимофеев, Иван Владимирович; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
8.


   
    Extended Discrete Interaction Model: Plasmonic Excitations of Silver Nanoparticles / V. I. Zakomirnyi [et al.] // J. Phys. Chem. C. - 2019. - Vol. 123, Is. 47. - P. 28867-28880, DOI 10.1021/acs.jpcc.9b07410. - Cited References: 64. - H.Å. and V.I.Z. acknowledge the support of the Russian Science Foundation (project no. 18-13-00363). L.K.S. acknowledges the support of Carl Tryggers Stifetelse, project no. CTS 18-441. . - ISSN 1932-7447
Кл.слова (ненормированные):
Aspect ratio -- Geometry -- Nanorods -- Optical properties -- Plasmonics -- Silver nanoparticles
Аннотация: We present a new atomistic model for plasmonic excitations and optical properties of metallic nanoparticles, which collectively describes their complete response in terms of fluctuating dipoles and charges that depend on the local environment and on the morphology of the composite nanoparticles. Being atomically dependent, the total optical properties, the complex polarizability, and the plasmonic excitation of a cluster refer to the detailed composition and geometric characteristics of the cluster, making it possible to explore the role of the material, alloy mixing, size, form shape, aspect ratios, and other geometric factors down to the atomic level and making it useful for the design of plasmonic particles with particular strength and field distribution. The model is parameterized from experimental data and, at present, practically implementable for particles up to more than 10 nm (for nanorods even more), thus covering a significant part of the gap between the scales where pure quantum calculations are possible and where pure classical models based on the bulk dielectric constant apply. We utilized the method to both spherical and cubical clusters along with nanorods where we demonstrate both the size, shape, and ratio dependence of plasmonic excitations and connect this to the geometry of the nanoparticles using the plasmon length.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, SE-10691, Sweden
Federal Siberian Research Clinical Centre under FMBA of Russia, Kolomenskaya 26, Krasnoyarsk, 660037, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Physics, Kaunas University of Technology, Kaunas, LT-51368, Lithuania
College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China

Доп.точки доступа:
Zakomirnyi, V. I.; Закомирный, Вадим Игоревич; Rinkevicius, Z.; Baryshnikov, G. V.; Sorensen, L. K.; Agren, H.
}
Найти похожие
9.


   
    Laser-induced chemical liquid-phase deposition plasmonic gold nanoparticles on porous TiO2 fIlm with great photoelectrochemical performance / A. S. Voronin, I. V. Nemtsev, M. S. Molokeev [et al.] // Appl. Sci. - 2022. - Vol. 12, Is. 1. - Ст. 30, DOI 10.3390/app12010030. - Cited References: 35 . - ISSN 2076-3417
   Перевод заглавия: Лазерно-индуцированное химическое жидкофазное осаждение плазмонных наночастиц золота на пористом TiO2
РУБ Chemistry, Multidisciplinary + Engineering, Multidisciplinary + Materials Science, Multidisciplinary + Physics, Applied
Рубрики:
AU NANOPARTICLES
   ELECTRODES

Кл.слова (ненормированные):
photoelectrochemical properties -- laser-induced chemical liquid-phase deposition (LCLD) -- plasmonic gold nanoparticles -- nanostructures
Аннотация: This paper considers the photoelectrochemical characteristics of a composite porous TiO2 thin film with deposited plasmonic gold nanoparticles. The deposition of gold nanoparticles was carried out by the laser-induced chemical liquid-phase deposition (LCLD) method. The structural characteristics of the composite have been studied; it has been shown that the porous TiO2 film has a lattice related to the tetragonal system and is in the anatase phase. Gold nanoparticles form on the surface of a porous TiO2 film. A complex of photoelectrochemical measurements was carried out. It was shown that the deposition of plasmonic gold nanoparticles led to a significant increase in the photocurrent density by ~820%. The proposed concept is aimed at testing the method of forming a uniform layer of plasmonic gold nanoparticles on a porous TiO2 film, studying their photocatalytic properties for further scaling, and obtaining large area Au/TiO2/FTO photoelectrodes, including in the roll-to-roll process.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci FRC KSC SB RAS, Fed Res Ctr, Krasnoyarsk Sci Ctr, Dept Mol Elect,Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Sch Engn & Construct, Krasnoyarsk 660041, Russia.
Bauman Moscow State Syst Univ, Lab EMI Shielding Mat, Moscow 105005, Russia.
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia.
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Lab Mol Spect, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Sch Engn Phys & Radio Elect, Krasnoyarsk 660041, Russia.
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Sch Nonferrous Met & Mat Sci, Krasnoyarsk 660041, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Aircraft, Krasnoyarsk 660037, Russia.
RAS, Fed Res Ctr, Dept Heterogeneous Catalysis, Boreskov Inst Catalysis SB, Novosibirsk 630090, Russia.
Novosibirsk State Univ, Fac Nat Sci, Novosibirsk 630090, Russia.
St Petersburg State Univ, Inst Chem, St Petersburg 199034, Russia.
Alferov Univ, Lab Renewable Energy Sources, St Petersburg 194021, Russia.
PhotoChem Elect LLC, Goryachiy Klyuch 353292, Russia.

Доп.точки доступа:
Voronin, Anton S.; Nemtsev, I. V.; Немцев, Иван Васильевич; Molokeev, M. S.; Молокеев, Максим Сергеевич; Simunin, Mikhail M.; Kozlova, Ekaterina A.; Markovskaya, Dina V.; Lebedev, Denis V.; Lopatin, Dmitry S.; Khartov, Stanislav V.
}
Найти похожие
10.


   
    Medium dependent optical response in ultra-fine plasmonic nanoparticles / L. K. Sorensen, D. E. Khrennikov, V. S. Gerasimov [et al.] // Phys. Chem. Chem. Phys. - 2022. - Vol. 24, Is. 39. - P. 24062-24075, DOI 10.1039/d2cp02929d. - Cited References: 52. - DEK, VSG, SVK acknowledge the support of the Russian Science Foundation (project no. 18-13-00363). L. K. S. acknowledges the support of Carl Tryggers Stiftelse, project CTS 18-441. We also acknowledge the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) partially funded by the Swedish Research Council through grant agreement no. 2021/3-22 . - ISSN 1463-9084
   Перевод заглавия: Зависимость оптического отклика сверхмалых плазмонных наночастиц от окружающей среды
Аннотация: We study the influence of media on the interaction of ultra-fine plasmonic nanoparticles (≤ 8 nm) with radiation. The important role of the surface layer of the nanoparticles, with properties that differ from the ones in the inner part, is established. Using an atomistic representation of the nanoparticle material and its interaction with light, we find a highly inhomogeneous distribution of the electric field inside and around the particles. It is predicted that with an increase in the refractive index of the ambient medium, the extension of the surface layer of atoms increases, something that also is accompanied by an enhanced red shift of the plasmon resonance band compared to large particles in which the influence of this layer and its relative volume is reduced. It is shown that the physical origin for the formation of a surface layer of atoms near the nanoparticle boundary is related to the anisotropy of the local environment of atoms in this layer which changes the conditions for the interaction of neighboring atoms with each other and with the incident radiation. It is shown that a growth of the refractive index of the ambient medium results in an increase in the local field in the dielectric cavity in which a plasmonic nanoparticle is embedded and which is accompanied by a growth of the amplitude of the plasmon resonance. We predict that in the ultra-fine regime the refractive index sensitivity shows a decreasing trend with respect to size which is opposite to that for larger particles. With the applied atomistic model this work demonstrates close relations between field distributions and properties of ultra-fine nanoparticles.

Смотреть статью,
Scopus
Держатели документа:
Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden. lasse.kragh.soerensen@gmail.com
Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, SE-10691, Sweden
University Library, University of Southern Denmark, DK-5230 Odense M, Denmark
International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modelling, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Federal Siberian Research Clinical Centre under FMBA of Russia, 660037, Kolomenskaya, 26 Krasnoyarsk, Russia
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Sorensen, L. K.; Khrennikov, D. E.; Gerasimov, V. S.; Ershov, A. E.; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Agren, H.
}
Найти похожие
 1-10    11-20   21-30   31-40   41-49 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)