Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (5)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=melting<.>)
Общее количество найденных документов : 11
Показаны документы с 1 по 10
 1-10    11-11 
1.


   
    Raman scattering study of the upper phase transition in CsScF4 / A. N. Vtyurin [et al.] // Journal of Raman Spectroscopy. - 2000. - Vol. 31, Is. 3. - P. 151-155, DOI 10.1002/(SICI)1097-4555(200003)31:3151::AID-JRS5103.0.CO;2-T . - ISSN 0377-0486
Кл.слова (ненормированные):
article -- crystal -- heating -- high temperature -- melting point -- neutron scattering -- phase transition -- photon -- Raman spectrometry -- temperature dependence
Аннотация: Effects of the phase transition between the high-temperature tetragonal phases of the CsScF4 crystal were studied by Raman scattering. The appearance of new lines including a soft mode was observed below the phase transition point, in complete accordance with the new crystal symmetry. The behavior of the soft mode, which corresponds to in-phase rotations of ScF6 rigid groups around the z-axis (and out-of-phase within perovskite-like layers), resembles that observed earlier in RbAlF4, which suggests a similar mechanism of this transition in both crystals. Copyright (C) 2000 John Wiley and Sons, Ltd.

Scopus,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Krasnoyarsk 660036, Russian Federation
Laboratoire Physique de l'Etat Condens, UPRES A CNRS No. 6087, Universit du Maine, 72085 Le Mans Cdex g, France

Доп.точки доступа:
Vtyurin, A. N.; Втюрин, Александр Николаевич; Bulou, A.; Krylov, A. S.; Крылов, Александр Сергеевич; Shmygol, I. V.; Aleksandrov, K. S.; Александров, Кирилл Сергеевич
}
Найти похожие
2.


   
    Orientational melting of low chains of molecules and nature of the nematic-smectic A-phase transition / E. M. Averyanov, P. V. Adomenas, V. A. Zhuikov, V. Ya. Zyryanov // JETP Letters. - 1986. - Vol. 43, Is. 2. - P. 117-120. - Cited References: 13 . - ISSN 0021-3640
РУБ Physics, Multidisciplinary


WOS
Доп.точки доступа:
Averyanov, E. M.; Аверьянов, Евгений Михайлович; Adomenas, P. V.; Zhuikov, V. A.; Жуйков, Владимир Александрович; Zyryanov, V. Ya.; Зырянов, Виктор Яковлевич
}
Найти похожие
3.


   
    AFMR LINEWIDTH STUDY OF FEBO3 CRYSTALS GROWN FROM SOLUTION-MELTING / G. A. PETRAKOVSKII [и др.] // Fiz. Tverd. Tela. - 1984. - Vol. 26, Is. 12. - P. 3720-3722. - Cited References: 6 . - ISSN 0367-3294
РУБ Physics, Condensed Matter


WOS
Доп.точки доступа:
PETRAKOVSKII, G. A.; SOSNIN, V. M.; RUDENKO, V. V.; RYBNIKOVA, S. M.
}
Найти похожие
4.


   
    Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state / V. S. Gerasimov [et al.] // Opt. Express. - 2016. - Vol. 24, Is. 23. - P. 26851-26856, DOI 10.1364/OE.24.026851. - Cited References: 24. - This work was performed within the State contract of the RF Ministry of Education and Science for Siberian Federal University for scientific research in 2014–2016 (Reference number 1792) and SB RAS Program No II.2P (0358-2015-0010). The numerical calculations were performed using the MVS-1000 M cluster at the Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences. . - ISSN 1094-4087
Кл.слова (ненормированные):
Electron scattering -- Gold -- Lattice constants -- Liquids -- Melting -- Metal nanoparticles -- Nanoparticles -- Surface plasmon resonance -- Electron phonon couplings -- Experimental spectra -- Experimental values -- Gold Nanoparticles -- Nonlinear optical response -- Plasmonic nanoparticle -- Relaxation constants -- Surface plasmon frequency -- Plasmons
Аннотация: Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electronphonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles. © 2016 Optical Society of America.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarskz, Russian Federation
Division of Theoretical Chemistry and Biology, Royal Institute of Technology, Stockholm, Sweden

Доп.точки доступа:
Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Ершов, Александр Евгеньевич; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Agren, H.; Polyutov, S. P.
}
Найти похожие
5.


   
    Surface plasmon resonance of Au nanoparticles in the vicinity of the melting temperature / A. E. Ershov [et al.] // The International Conference on Coherent and Nonlinear Optics; The Lasers, Applications, and Technologies ICONO/LAT 2016. - 2016. - Ст. IThL13. - P. 77-78
Аннотация: We have demonstrated experimentally the significant suppression of resonant properties of single Au nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state.

Материалы конференции,
Материалы конференции

Доп.точки доступа:
Ershov, A. E.; Ершов, Александр Евгеньевич; Gerasimov, R.E.; Rasskazov, I. L.; Рассказов, Илья Леонидович; Zakomirnyi, V. I.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Karpov, S. V.; Карпов, Сергей Васильевич; Polyutov, S. P.; International Conference on Coherent and Nonlinear Optics(2016 ; Sept. ; 26-30 ; Minsk, Belarus); International Conference on Lasers, Applications, and Technologies(2016 ; Sept. ; 26-30 ; Minsk, Belarus)
}
Найти похожие
6.


   
    Surface plasmon resonance of aU nanoparticles in the vicinity of the melting temperature / V. S. Gerasimov [et al.] // Журнал прикладной спектроскопии. - 2016. - Т. 83, Вып. 6-16. - P. 103-104 . - ISSN 0514-7506
Аннотация: We have demonstrated experimentally the significant suppression of resonant propertiesof single Au nanoparticles at thesurface plasmonfrequency during heating and subsequent transition to the liquid state.

РИНЦ

Доп.точки доступа:
Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Ершов, Александр Евгеньевич; Rasskazov, I. L.; Zakomirnyi, V. I.; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Polyutov, S. P.; International Conference on Coherent and Nonlinear Optics(2016 ; Sept. ; 26-30 ; Minsk, Belarus); International Conference on Lasers, Applications, and Technologies(2016 ; Sept. ; 26-30 ; Minsk, Belarus)
}
Найти похожие
7.


   
    Synthesis, structure, melting and optical properties of three complex orthorhombic sulfides BaDyCuS3, BaHoCuS3 and BaYbCuS3 / N. O. Azarapin, V. V. Atuchin, N. G. Maximov [et al.] // Mater. Res. Bull. - 2021. - Vol. 140. - Ст. 111314, DOI 10.1016/j.materresbull.2021.111314. - Cited References: 60. - This study was supported by the Russian Science Foundation (19-42-02003). The authors would like to thank Alexey A. Lubin for his studies on SEM. The studies were carried out on the basis of laboratory of electron and probe microscopy in REC ‘Nanotechnologies’. This work was partially supported by the DST-RSF project under the India-Russia Programme of Cooperation in Science and Technology (No. DST/ INT/RUS/RSF/P-20 dated May 16, 2019). Shaibal Mukherjee would like to thank MeitY for the YFRF under the Visvesvaraya Ph.D. Scheme for Electronics and IT. This publication is an outcome of the R&D work undertaken in the project under the Visvesvaraya Ph.D. Scheme of MeitY being implemented by Digital India Corporation (formerly Media Lab Asia). We are grateful to the Krasnoyarsk Regional Center of Research Equipment of the Federal Research Center «Krasnoyarsk Science Center SB RAS» for the provided equipment . - ISSN 0025-5408
   Перевод заглавия: Синтез, строение, плавление и оптические свойства трех сложных орторомбических сульфидов BaDyCuS3, BaHoCuS3 и BaYbCuS3
Кл.слова (ненормированные):
Complex sulfides -- Crystal structure -- SEM -- Raman -- Melting point
Аннотация: Complex sulfides BaDyCuS3, BaHoCuS3 and BaYbCuS3 were synthesized in a flow of sulfiding gases (CS2, H2S) at 900°C from standard solutions of lanthanide and copper nitrates, as well as from the same standard Ba(OH)2 solution. The crystal structures of BaDyCuS3, BaHoCuS3 and BaYbCuS3 were obtained by the Rietveld refinement method. All three compounds crystallize in the Cmcm space group (KZrCuS3 structural type) as predicted by the tolerance factor analysis. Their micromorphological, thermal and spectroscopic properties are evaluated. BaDyCuS3 and BaHoCuS3 melt congruently at 1376.5 °C and 1363.8 °C. BaYbCuS3 melts incongruently at 1353.3 °C. The optical band gap is 2.45 eV for BaDyCuS3, 2.37 eV for BaHoCuS3 and 1.82 eV for BaYbCuS3. The low bandgap of BaYbCuS3 is explained by the charge transfer band of Yb at the bottom of conduction band. The vibrational parameters of BaDyCuS3, BaHoCuS3 and BaYbCuS3 crystals were determined with the use of Raman and Infrared spectroscopies.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Chemistry, Tyumen State University, Tyumen, 625003, Russian Federation
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, 630090, Russian Federation
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation
Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS, Krasnoyarsk, 660049, Russian Federation
Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Hybrid Nanodevice Research Group (HNRG), Electrical Engineering and Centre for Advanced Electronics (CAE), Indian Institute of Technology IndoreMadhya Pradesh 453552, India
Laboratory of the Chemistry of Rare Earth Compounds, Institute of Solid State Chemistry, UB RAS, Ekaterinburg, 620137, Russian Federation

Доп.точки доступа:
Azarapin, N. O.; Atuchin, V. V.; Maximov, N. G.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Shestakov, N. P.; Шестаков, Николай Петрович; Krylov, A. S.; Крылов, Александр Сергеевич; Burkhanova, T. M.; Mukherjee, S.; Andreev, O. V.
}
Найти похожие
8.


   
    NMR Imaging of Heavy Crude Oil for Softening Detection under Heat Treatment / E. V. Morozov [et al.] // Journal of Materials Science and Engineering. - 2011. - Т. 1, № 4. - P545-551 . - ISSN 2161-6213. - ISSN 2161-6221
Кл.слова (ненормированные):
mongolian heavy crude oil -- nmr imaging -- oil softening -- melting front -- oil heat treatment
Аннотация: NMR Imaging results of Mongolian heavy crude oil samples subjected to heat treatment are presented in this work. Abundance of dotted inhomogeneities related with high paraffinicity of heavy oil was obtained during imaging investigation. Behavior of heavy oil subjected to heat treatment, dotted inhomogeneities changes, softening and dynamic of melting front were visualized by means of imaging techniques based on both gradient and spin echo. Softening forestalling over the melting front are demonstrated using artificial mark in the form of water drop deposited on the oil surface. In results the NMR imaging proved to be highly effective for ?investigation of impurity agglomerates in heavy oil and it is perspective for heavy oil engineering development. ?

РИНЦ
Держатели документа:
Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Доп.точки доступа:
Morozov, E. V.; Морозов, Евгений Владимирович; Martyanov, O.N.; Volkov, N. V.; Волков, Никита Валентинович; Falaleev, O. V.; Фалалеев, Олег Владимирович
}
Найти похожие
9.


   
    Nuclear magnetic resonance study of ice-based composite materials reinforced with nanodisperse aluminum oxide fibers / E. V. Morozov, A. S. Voronin, S. V. Kniga, V. M. Buznik // Inorg. Mater. Appl. Res. - 2022. - Vol. 13, Is. 1. - P. 217-224, DOI 10.1134/S2075113322010270. - Cited References: 21. - This work was performed within the scope of state contract no. 0287-2021-0012 of the Institute of Chemistry and Chemical Technology (Siberian Branch, Russian Academy of Sciences) in the part of developing the MRI methods for studying composite materials; also the work was supported by the Russian Science Foundation (project no. 18-1300392) in the part of the study of the processes of water crystallization and ice melting in ice-based composite materials . - ISSN 2075-1133. - ISSN 2075-115X
РУБ Materials Science, Multidisciplinary
Рубрики:
SELF-DIFFUSION
   WATER

Кл.слова (ненормированные):
ice composite materials -- reinforcing -- freezing -- melting -- NMR spectroscopy -- magnetic resonance imaging
Аннотация: Pulsed-field gradient NMR spectroscopy and magnetic resonance imaging methods were used to investigate water suspensions of nanosized fibers of aluminum oxide and ice composite materials based on these fibers. Introduction of the nanofibers was shown to have no noticeable structural effect in the suspensions in the Al2O3 concentration range of 1-10 wt %. High content of the filler was found to change the morphology and texture of the ice matrix in the composites remarkably: it becomes more homogeneous and acquires a higher degree of continuity; the melting front does not visualize internal melting zones or integrity defects in the composite. At the same time, addition of the nanofibers to the ice composites weakly influences the quantitative dynamics of the heat transfer, which is manifested in close values of the propagation speeds of the freezing/melting front in the samples at similar temperatures.

Смотреть статью,
Scopus,
WOS

Публикация на русском языке Исследование ледовых композиционных материалов, армированных нанодисперсными волокнами оксида алюминия, методами ядерного магнитного резонанса [Текст] / Е. В. Морозов, А. С. Воронин, С. В. Книга, В. М. Бузник // Материаловедение. - 2021. - № 8. - С. 9-18

Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr, Inst Chem & Chem Technol, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
All Russian Sci Res Inst Aviat Mat, Moscow 105005, Russia.
Tomsk State Univ, Tomsk 634050, Russia.

Доп.точки доступа:
Morozov, E. V.; Морозов, Евгений Владимирович; Voronin, A. S.; Kniga, S., V; Buznik, V. M.; Institute of Chemistry and Chemical Technology (Siberian Branch, Russian Academy of Sciences) [0287-2021-0012]; Russian Science FoundationRussian Science Foundation (RSF) [18-1300392]
}
Найти похожие
10.


   
    Properties of oxysulfide phases and phase diagram of the Nd2S3–Nd2O3 system / S. А. Osseni, P. O. Andreev, A. A. Polkovnikov [et al.] // J. Solid State Chem. - 2022. - Vol. 314. - Ст. 123438, DOI 10.1016/j.jssc.2022.123438. - Cited References: 51. - This research was funded by the Tyumen Oblast Government , as part of the West-Siberian Interregional Science and Education Center's project No. 89-DON (3) . - ISSN 0022-4596
Кл.слова (ненормированные):
Neodymium sulfide -- Neodymium oxysulfide -- Structure -- Melting enthalpy -- Phase diagram -- Optical bandgap
Аннотация: We have determined the thermal characteristics and optical properties of the sulfide and oxysulfide phases in the Nd2S3 - Nd2O3 system. A congruent melting peak at temperature 1801 ​± ​4.9 ​°C with ΔH ​= ​65.2 ​± ​6.7 ​kJ/mol was detected for the Nd2S3 compound by the DSC method. The characteristics of the α-Nd2S3 → γ-Nd2S3 polymorphic transition are t ​= ​1183 ​± ​1.8°С, and ΔH ​= ​7.5 ​± ​0.3 ​kJ/mol. The γ-Nd2S3 phase obtained upon cooling during annealing at 800 ​°C is retained for up to 30 ​h, and then the γ-Nd2S3 → α-Nd2S3 transition occurs within 20 ​h. The microhardness of the phases is: α-Nd2S3 H ​= ​451 ​± ​4 HV; γ-Nd2S3 H ​= ​531 ​± ​4 HV. It was found by the TG method that the Nd10S14O phase thermally dissociates at temperatures above 1400 ​°C. The mass loss is 0.5 mass % at 1580 ​°C and 1.0 mass % at 1620 ​°C, but the samples remain single-phase ones after cooling. However, two impurity phases γ-Nd2S3-X and Nd2O2S appear in the Nd10S14O samples treated at temperatures above 1620 ​± ​20 ​°C. For samples of the Nd10S14O phase annealed in an argon atmosphere at temperatures of 1050, 1400, 1580 ​°C, a regular decrease in the unit cell parameters and optical band gap was recorded: 1050 ​°C a ​= ​15.06291(28), c ​= ​19.97864(35), Eg ​= ​2, 63 ​eV, 1400 ​°C a ​= ​15.04779(36), c ​= ​19.97160(44), Eg ​= ​2.64 ​eV; 1580 ​°C a ​= ​15.03532(48), c ​= ​19.94984(60), Eg ​= ​2.51 ​eV. The microhardness of Nd10S14O is H ​= ​549 ​± ​10 HV. The Nd2O2S phase has H ​= ​593 ​± ​4 HV, Eg ​= ​4.28 ​eV. The phase diagram of the Nd2S3 - Nd2O3 system from 1000 ​°C to the melt was constructed. The Nd2O2S phase melts congruently at 2050 ​± ​30 ​°C. Eutectics with coordinates 23 ​mol. % Nd2O3 (0.3484 Nd10S14O ​+ ​0.6516 Nd2O2S), t ​= ​1553 ​± ​1.8°С; ΔH ​= ​187 ​± ​19 ​J/g; 82 ​mol. % Nd2O3; (0.54 Nd2O2S ​+ ​0.46 Nd2O3), t ​= ​1970 ​± ​30°С were obtained. The liquidus of the Nd2S3 - Nd2O3 system was built according to DSC data and calculated using the Redlich-Kister equation. The melting enthalpy of Nd2O2S ΔH ​= ​67 ​kJ/mol was calculated using the Schroeder equation.

Смотреть статью,
Scopus
Держатели документа:
Kaba Chemistry and Applications Research Laboratory, Faculty of Sciences and Technologies of Natitingou/ National University of Science, Technology, Engineering and Mathematics (UNSTIM), Abomey, BP: 2282, Benin
Institute of Chemistry, Tyumen State University, Tyumen, Volodarsky str. 6625003, Russian Federation
Boreskov Institute of Catalysis SB RAS, Novosibirsk, Lavrentiev Ave. 5630090, Russian Federation
Novosibirsk State University, Novosibirsk, Pirogova str. 2630090, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Akademgorodok str. 50, building 38660036, Russian Federation
Siberian Federal University, Krasnoyarsk, Svobodnyj av. 79660079, Russian Federation
Institute of Natural Sciences and Mathematics, Kurgan state University, Kurgan, Sovetskaya str. 2, b. 4640020, Russian Federation
Tyumen Industrial University, Tyumen, Volodarsky str 38625000, Russian Federation
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Pervomaiskaya str. 91620990, Russian Federation

Доп.точки доступа:
Osseni, S. А.; Andreev, P. O.; Polkovnikov, A. A.; Zakharov, B. A.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Abulkhaev, M. U.; Volkova, S. S.; Kamaev, D. N.; Kovenskiy, I. M.; Nesterova, N. V.; Kudomanov, M. V.; Andreev, O. V.
}
Найти похожие
 1-10    11-11 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)