Главная
Авторизация
Фамилия
Пароль
Регистрация
Библиотека института физики им. Л.В. Киренского СО РАН
Базы данных
Труды сотрудников ИФ СО РАН - результаты поиска
Вид поиска
Каталог книг и брошюр библиотеки ИФ СО РАН
Каталог журналов библиотеки ИФ СО РАН
Труды сотрудников ИФ СО РАН
Область поиска
Ключевые слова
Автор
Заглавие
Год издания
Место работы автора
в найденном
Найдено в других БД:
Каталог книг и брошюр библиотеки ИФ СО РАН (6)
Формат представления найденных документов:
полный
информационный
краткий
Отсортировать найденные документы по:
автору
заглавию
году издания
типу документа
Поисковый запрос:
(<.>A=Aleksandrovsky, A. S.$<.>)
Общее количество найденных документов
:
281
Показаны документы
с 1 по 20
1.
Deep UV generation
and fs pulses characterization using strontium tetraborate [Text] / A. S.
Aleksandrovsky
, A. M. Vyunishev, A. I. Zaitsev [et al.]> //
Nonlinear Optics and Applications V : Proceedings of the SPIE. - 2011. - P36. - (SPIE Optics + Optoelectronics)
Аннотация:
The properties of NPC structures in strontium tetraborate are analyzed. Different types of NPC structures are revealed that possess different nonlinear properties, and their spectral dependences of frequency conversion efficiency are calculated and compared. Experimental study of these structures is reported for the process of doubling of the second harmonic of fs Ti:S laser. Tuning of generated radiation is obtained in the range 187.5 - 232.5 nm, with extreme insensitivity to the angular orientation of NPC. Behavior of tuning curve along investigated fundamental wave range is similar in all studied samples, but efficiency obtained depends on the type of structure. Conversion efficiency andspectral quality of generated radiation is experimentally shown to grow better when using NPC with improved structure. Prospects of VUV converter on a single NPC are discussed. NPCs of SBO are demonstrated to be useful for autocorrelation diagnostics both in random QPM geometry and in the geometry of nonlinear diffraction from virtual beam.
Доп.точки доступа:
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Vyunishev, A. M.; Вьюнышев, Андрей Михайлович; Zaitsev, A. I.; Зайцев, Александр Иванович; Ikonnikov, A.A.; Pospelov, G.I.; Slabko, V.V.; Zhokhova, A.A.; Nonlinear Optics and Applications(2011 ; Apr. ; 19-21 ; Prague)
}
Найти похожие
2.
Nonlinear optics of
randomly structured strontium tetraborate / A. S.
Aleksandrovsky
, A. M. Vyunishev, A. I. Zaitsev [et al.]> //
CLEO/Europe-EQEC 2011 : IEEE, 2011. - P84
Аннотация:
Strontium tetraborate (SBO) is attractive for nonlinear optics of short-wavelength range including VUV due to its transparency window [1]. Nonlinear coefficients of SBO are the largest among crystals transparent below 270 nm. Angular phase matching is, however, absent in SBO, and the only possibility of conversion enhancement is to employ self-organized random nonlinear photonic crystal (NPC) structures discovered in SBO. These NPC are capable of two limiting cases of phase matching, namely, nonlinear diffraction (NLD) and random quasi phase matching (RQPM). NLD allows detection of NPCs and testing their reciprocal superlattice vectors (RSV) spectra via variation of the incidence angle. NLD conversion of broadband fs pulses of modest power from Ti:S oscillator results in 1.9% efficiency, being, to our knowledge, the best result obtained for this type of phase matching. RSV spectrum is wide enough to ensure NLD tunability from 355 to 510 nm. This spectrum is not flat, but the narrowing of the generated radiation spectrum due to non-flatness is rather modest.
Материалы конференции
Доп.точки доступа:
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Vyunishev, A. M.; Вьюнышев, Андрей Михайлович; Zaitsev, A. I.; Зайцев, Александр Иванович; Ikonnikov, A. A.; Иконников, Антон Андреевич; Pospelov, G. I.; Slabko, V. V.; Слабко, Виталий Васильевич; Conference on Lasers and Electro-Optics Europe(2011 ; Jun. 21-25); European Quantum Electronics Conference(12 ; 2011 ; Jun. 21-25)
}
Найти похожие
3.
Об экспериментальной проверке
красного сдвига зонной структуры нелинейного фотонного кристалла / Александровский A.C.Вьюнышев A.M.Зайцев А.И. [и др.]> //
XIII Школа молодых ученых "Актуальные проблемы физики" и IV Школа-семинар "Инновационные аспекты фундаментальных исследований" : сборник трудов. - 2010. - С. 101-102
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН
Доп.точки доступа:
Александровский, Александр Сергеевич;
Aleksandrovsky
, A. S.; Вьюнышев, Андрей Михайлович; Vyunishev, A. M.; Зайцев, Александр Иванович; Zaitsev, A. I.; ИКОННИКОВ, Антон Андреевич; Поспелов, Геннадий Игоревич; Слабко, Виталий Васильевич; Slabko, V. V.; "Инновационные аспекты фундаментальных исследований", Школа-семинар(4 ; 2010 ; 14-19 окт. ; Звенигород, Россия); "Актуальные проблемы физики", Школа молодых ученых(13 ; 2010 ; 14-19 окт. ; Звенигород, Россия)
}
Найти похожие
4.
Nonlinear photonic crystals
of strontium tetraborate [Text] / A. S.
Aleksandrovsky
> //
International Workshop "Nonlinear photonics: theory, materials, applications" (NLP-2011) : Book of Abstracts. - 2011. - P40
Аннотация:
Structural, optical and nonlinear optical properties of strontium tetraborate (SBO) single crystals are summarized. SBO presently is not considered to be a ferroelectric, however, domain structures consisting of alternating oppositely poled domains, strongly resembling those present in such ferroelectrics as potassium titanyl phosphate and lithium niobate, were recently discovered in this crystal. Such geometrical properties as orientation, size, and degree of randomization, of these domain structures are described. The problem of origin of domain structures in SBO is considered, as well as the possibility of their characteristics control. From the point of view of optical properties, domain-structured samples of strontium tetraborate are classified as randomized nonlinear photonic crystals. Comparative study of nonlinear diffraction and random quasi-phase-matching of nanosecond and femtosecond laser pulses in these nonlinear photonic crystals is presented. Prospects of creation of nonlinear optical converters of laser radiation into VUV spectral region based on domain structured strontium tetraborate are discussed.
Доп.точки доступа:
Aleksandrovsky
, A.S.; "Nonlinear Photonics: Theory, Materials and Applications", Int. Workshop(2011 ; St. Petersburg)
}
Найти похожие
5.
Nonlinear photonic crystals
of strontium tetraborate: Properties and conversion of radiation / A. S.
Aleksandrovsky
[et al.]> // Proceedings of SPIE - The International Society for Optical Engineering. - 2010. -
Vol. 7728
: Nonlinear Optics and Applications IV (12 April 2010 through 15 April 2010, Brussels, ) Conference code: 81010,
DOI
10.1117/12.853713 . - ISBN 0277786X (ISSN); 9780819482013 (ISBN)
Кл.слова (ненормированные):
nonlinear photonic crystal
--
second harmonic generation
--
strontium tetraborate
--
As-grown
--
Average power
--
Domain shape
--
Efficiency enhancement
--
Femtoseconds
--
Fourth harmonics
--
Nonlinear diffraction
--
Nonlinear optical process
--
Nonlinear photonic crystals
--
Quasi-phase-matched
--
Second harmonic generation
--
Tetraborate
--
Ti: Sapphire laser
--
Ti:sapphire oscillators
--
Ferroelectricity
--
Harmonic analysis
--
Nonlinear optics
--
Optical materials
--
Photonic crystals
--
Sapphire
--
Strontium
--
Harmonic generation
Аннотация:
Random nonlinear photonic crystal (NPC) structures formed by as-grown domains in a non-ferroelectric strontium tetraborate (SBO) are investigated. The domain shape and orientation are similar to those in ferroelectric KTP. Nonlinear diffraction is the simplest way to detect, evaluate and characterize these structures. Reciprocal superlattice vectors spectra of NPC in SBO are very wide and enable broadband efficiency enhancement of nonlinear optical processes. Second harmonic (SH) generation of femtosecond Ti:sapphire oscillator radiation with 1.9% efficiency is obtained using nonlinear diffraction geometry. Random quasi phase matched generation at the wavelengths of fourth harmonic of Ti:sapphire laser is obtained with average power up to 1 ?W. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Scopus
,
eLibrary
,
Источник статьи
,
WOS
Держатели документа:
Kirensky Institute of Physics, Akademgorodok 50/38, 660036, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodniy 79, 660041, Krasnoyarsk, Russian Federation
Доп.точки доступа:
Aleksandrovsky
, A. S.; Zaitsev, A. I.; Cherepakhin, A. V.; Черепахин, Александр Владимирович; Vyunishev, A. M.; Rovsky, V. E.; Slabko, V. V.
}
Найти похожие
6.
Up-Conversion Luminescence of
YAl3(BO3)4:(Yb3+,Tm3+) Crystals /
Aleksandrovsky
A.S.Gudim I.A. [et al.]> // J. Alloys and Compounds. - 2010. -
Vol. 496
. - PL18-L21
Доп.точки доступа:
Aleksandrovsky
, A.S.; Gudim, I.A.; Krylov, A.S.; Malakhovskii, A.V.; Temerov, V.L.
}
Найти похожие
7.
Structure and properties
of phases in the Cu2-ХSe-Sb2Se3 system. The Cu2-XSe-Sb2Se3 phase diagram / M. A. Shtykova, M. S. Molokeev, B. A. Zakharov [et al.]> // J. Alloys Compd. - 2022. -
Vol. 906
. - Ст. 164384,
DOI
10.1016/j.jallcom.2022.164384. - Cited References: 111. - The research was supported for R.S. Bubnova by the Ministry of Science and Higher Education of the Russian Federation within the scientific tasks of the Institute of Silicate chemistry (Russian Academy of Sciences) [project number 0097-2019-0013]. The equipment of Research and Education Center "Molecular design and ecologically safe technologies" (Novosibirsk State University) was used for single-crystal X-ray diffraction experiments. BAZ and EVB acknowledge support by the Ministry of Science and Higher Education, project AAAA-A21-121011390011-4 . - ISSN 0925-8388
Перевод заглавия:
Структура и свойства фаз в системе Cu2-xSe-Sb2Se3; фазовая диаграмма Cu2-xSe-Sb2Se3
Кл.слова (ненормированные):
Phase equilibria
--
Phase diagram
--
High-temperature X-ray diffraction
--
Redlich-Kister polynomial model
--
Scanning electron microscopy
--
Differential scanning calorimetry
Аннотация:
The phase diagram of the Cu2−XSe-Sb2Se3 system is revisited to clarify ambiguity/disagreement in previously reported data. Ternary Cu3SbSe3 and CuSbSe2 compounds were obtained. In order to confirm that the phases have been identified correctly, crystal structures were solved, and the energy band gaps measured. For the sample containing 75 mol% Sb2Se3 and 25 mol% Cu1.995Se the temperature range of the stability of the high-temperature CuSb3Se5 phase was determined for the first time. This phase is formed at 445 °С, decomposes following a peritectic reaction at 527 °С, and can be quenched. A high-temperature X-ray diffraction study of a sample containing 75 mol% Sb2Se3 and 25 mol% Cu2Se allowed us to measure the thermal expansion of the CuSbSe2 and Sb2Se3 phases present in the sample. The anisotropy of thermal expansion of CuSbSe2 is similar to that of As2S3 (orpiment); thermal expansion of Sb2Se3 is similar to that of AsS (realgar). The 6 balance equations of the invariant phase transformations involving all the ternary compounds existing in the Cu2−XSe-Sb2Se3 system were suggested for the first time. The temperature and the enthalpies of all these transformations were measured. A phase diagram of the Cu2−XSe-Sb2Se3 system was found for the first time in all the range of concentrations at temperatures from ambient to the complete melting. This diagram takes into consideration the phase equilibria that involve all the ternary compounds that are possible in this system. The liquidus of the Cu2−XSe-Sb2Se3 system was calculated according to Redlich-Kister equation; it agrees with the experimental data within 1–17 °С.
Смотреть статью
,
Scopus
,
Читать в сети ИФ
Держатели документа:
Department of Inorganic and Physical Chemistry, Institute of Chemistry, Tyumen State University, Volodarsky str. 6, Tyumen, 625003, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok Str. 50, Building 38, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodnyj av. 79, Krasnoyarsk, 660079, Russian Federation
Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation
Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation
Department of Condensed Matter Physics and Nanoscale Systems, Institute of Natural Sciences and Mathematics, Ural Federal University, Mira str. 19, Yekaterinburg, 620002, Russian Federation
Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, Makarov Emb., 2, St. Petersburg, 199034, Russian Federation
Department of Physical and Applied Chemistry, Institute of Natural Sciences and Mathematics, Kurgan State University, Sovetskaya str. 2, b. 4, Kurgan, 640020, Russian Federation
Laboratory of Electron and Probe Microscopy, REC “Nanotechnology”, Tyumen State University, Volodarsky str. 6, Tyumen, 625003, Russian Federation
Engineering Center of Composite Materials Based on Tungsten Compounds and Rare Earth Elements, Tyumen State University, Volodarsky str. 6, Tyumen, 625003, Russian Federation
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Pervomaiskaya str. 91, Yekaterinburg, 620990, Russian Federation
Доп.точки доступа:
Shtykova, M. A.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zakharov, B. A.; Selezneva, N. V.;
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Bubnova, R. S.; Kamaev, D. N.; Gubin, A. A.; Habibullayev, N. N.; Matigorov, A. V.; Boldyreva, E. V.; Andreev, O. V.
}
Найти похожие
8.
Random quasi-phase-matched conversion
of broadband radiation in a nonlinear photonic crystal / A. S.
Aleksandrovsky
[et al.]> // Phys. Rev. A. - 2010. -
Vol. 82
,
Is. 5
,
DOI
10.1103/PhysRevA.82.055806. - Cited Reference Count: 22. - Гранты: The work was supported by the Ministry of Education and Science of the Russian Federation (Contract 16.740.11.0150), Grant of the President of the Russian Federation for the support of leading scientific schools No. SS-4645.2010.2, Grant No. RNP.2.1.1.3455, Projects 2.5.2 and 3.9.1 of PSB RAS, and Projects No. 27.1 and No. 5 of SB RAS. A. M. Vyunishev is grateful for the support from Krasnoyarsk Regional Fund of Science and Technical Activity Support. - Финансирующая организация: Ministry of Education and Science of the Russian Federation [16.740.11.0150]; Russian Federation for the support of leading scientific schools [SS-4645.2010.2, RNP.2.1.1.3455]; PSB RAS [2.5.2, 3.9.1]; SB RAS [27.1, 5]; Krasnoyarsk Regional Fund of Science and Technical Activity . - ISSN 1050-2947
Кл.слова (ненормированные):
Broad spectrum
--
Broadband radiation
--
Femtosecond laser pulse
--
Fundamental wave
--
Nonlinear generation
--
Nonlinear photonic crystals
--
Quasi-phase-matched
--
Quasi-phase-matched frequency doubling
--
Red shift
--
Shorter wavelength
--
Tetraborate
--
Tuning ranges
--
Vacuum ultraviolets
--
Band structure
--
Crystal structure
--
Strontium
--
Ultrafast lasers
--
Ultrashort pulses
--
Photonic crystals
Аннотация:
Radiation in the range 187.5-215 nm was generated via random quasi-phase-matched frequency doubling of femtosecond laser pulses in nonlinear photonic crystals of strontium tetraborate. Abroad spectrum of fundamental radiation favors the probing of the nonlinear photonic crystal band structure. The red shift of the band structure upon the fundamental wave-vector rotation was observed. No principal limitations of the tuning range at its shorter wavelength boundary from the nonlinear photonic crystal (NPC) material are found. Calculation shows that the NPC structure enables enhancement of nonlinear generation in the vacuum ultraviolet.
WOS
,
Scopus
,
eLibrary
Держатели документа:
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
Siberian Fed Univ, Krasnoyarsk 660079, Russia
Доп.точки доступа:
Aleksandrovsky
, A. S.; Александровский Александр Сергеевич; Vyunishev, A. M.; Вьюнышев Андрей Михайлович; Zaitsev, A. I.; Зайцев Александр Иванович; Slabko, V. V.; Слабко Виталий Васильевич
}
Найти похожие
9.
New double nonlinear-optical
borate Rb3SmB6O12: Synthesis, structure and spectroscopic properties / V. Atuchin, A. Subanakov, A.
Aleksandrovsky
[et al.]> // J. Alloys Compd. - 2022. -
Vol. 905
. - Ст. 164022,
DOI
10.1016/j.jallcom.2022.164022. - Cited References: 65. - This work was supported by the Ministry of Science and Higher Education of Russia (project 0273-2021-0008) and the Russian Science Foundation (project 21-19-00046, in part of conceptualization). Also, this study was partly funded by RFBR (project No. 20–33-90188а) and State assignment Basic Project of IA&E SB RAS No 121032400052-6 . - ISSN 0925-8388
Перевод заглавия:
Новый двойной нелинейно-оптический борат Rb3SmB6O12: синтез, структура и спектроскопические свойства
Кл.слова (ненормированные):
Borate
--
Crystal structure
--
Raman
--
Photoluminescence
Аннотация:
New noncentrosymmetric alkali rare-earth double borate Rb3SmB6O12 was found in the ternary system Rb2O–Sm2O3–B2O3. The Rb3SmB6O12 powder was prepared by the solid state reaction method at 750 °C for 40 h and the crystal structure was obtained by the Rietveld method. Rb3SmB6O12 crystallized in space group R32 with unit cell parameters a = 13.4874 (3) and c = 30.9398 (6) Å, V = 4874.2 (2) Å3, Z = 15. In the three-dimensional framework structure of Rb3SmB6O12, each [B5O10]5− group is linked to four different Sm-O polyhedra and, likewise, each Sm-O polyhedron is connected to four neighboring [B5O10]5− groups. The Sm-O polyhedra are formed by the face-sharing linked SmO6 octahedra. Rb+ cations are located in large cavities of the framework structure. From the thermal stability measurements, the incongruent melting of Rb3SmB6O12 is observed at 1104 K with as high melting enthalpy as Hm = –161.5 J/g. The nonlinear optical response of Rb3SmB6O12 tested via SHG is estimated to be similar to that of K3YB6O12. The Raman spectrum of Rb3SmB6O12 is mainly governed by the vibrations of BO4 and BO3 borate groups observed over the wavenumber range of 287–1550 cm–1. The spectral bands below 270 cm–1 were attributed to rotational, translational and mixed vibrations of Rb3SmB6O12 structural units. The luminescence spectrum of Sm3+ ions in the specific local environment of the Rb3SmB6O12 crystal lattice shows the ability to control the individual band intensity ratio originating from 4G5/2 level.
Смотреть статью
,
Scopus
,
Читать в сети ИФ
Держатели документа:
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, 630090, Russian Federation
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation
Department of Applied Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation
Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude, 670047, Russian Federation
Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Photonics and Laser Technology, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation
School of Engineering and Construction, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Laboratory of Condensed Matter Spectroscopy, Institute of Automation and Electrometry, Novosibirsk, 630090, Russian Federation
Доп.точки доступа:
Atuchin, V.; Subanakov, A.;
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Bazarov, B.; Bazarova, J.; Krylov, A. S.; Крылов, Александр Сергеевич; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Pugachev, A.
}
Найти похожие
10.
Machine learning analysis
and discovery of zero-dimensional ns2 metal halides toward enhanced photoluminescence quantum yield / M. S. Molokeev, B. B. Su, A. S.
Aleksandrovsky
[et al.]> // Chem. Mat. - 2022. -
Vol. 34
,
Is. 2
. - P. 537-546,
DOI
10.1021/acs.chemmater.1c02725. - Cited References: 66. - This work is supported by the National Natural Science Foundation of China (51961145101 and 51972118), International Cooperation Project of National Key Research and Development Program of China (2021YFE0105700), Guangzhou Science and Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project no. 19-52-80003 . - ISSN 0897-4756. - ISSN 1520-5002
Перевод заглавия:
Машинное обучение и открытие нульмерных ns2 металлогалогенидов для увеличения квантового выхода фотолюминесценции
РУБ
Chemistry, Physical + Materials Science, Multidisciplinary
Рубрики:
RANDOM FOREST
CRYSTAL-STRUCTURE
TIN BROMIDE
CLASSIFICATION
Аннотация:
The dependence of photoluminescence quantum yield (PLQY) on the crystal structure of existing zero-dimensional ns2 metal halides is analyzed with the help of principal component analysis and random forest methods. The primary role of the distance between metal ions in different compounds is revealed, and the influence of other structural features such as metal-halogen distance and the distortion of metal-halogen polyhedrons are quantified. Accordingly, the two previously unknown Sb3+-based zero-dimensional metal halides were synthesized to verify the obtained model. Experimental studies of the two compounds demonstrated good agreement with the predictions, and the PLQY of (C10H16N)2SbCl5 is found to be 96.5%. Via machine learning analysis, we demonstrate that concentration quenching is the main factor that determines PLQY for all s2 ion metal halides, which will accelerate the discovery of new luminescence metal halides.
Смотреть статью
,
Scopus
,
WOS
,
Читать в сети ИФ
Держатели документа:
South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Fiber Laser Mat & Appl Tec, Sch Mat Sci & Engn, Guangzhou 510641, Peoples R China.
RAS, KSC, SB, Lab Coherent Opt,Kirensky Inst Phys,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Kemerovo State Univ, Dept Res & Dev, Kemerovo 650000, Russia.
Доп.точки доступа:
Molokeev, M. S.; Молокеев, Максим Сергеевич; Su, Binbin;
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Golovnev, Nicolay N.; Plyaskin, M. E.; Пляскин, Михаил Е.; Xia, Zhiguo
}
Найти похожие
11.
Synthesis, structure, and
properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er) / O. V. Andreev, V. V. Atuchin, A. S.
Aleksandrovsky
[et al.]> // Crystals. - 2022. -
Vol. 12
,
Is. 1
. - Ст. 17,
DOI
10.3390/cryst12010017. - Cited References: 60. - The study was funded by the Ministry of Science and Higher Education of the Russian Ferderation (Projects AAAA-A21-121011390011-4 and AAAA-A19-119031890025-9), as well as the Government of the Tyumen Region (grant to non-profit organizations No. 2. 89-don, dated 7 December 2020) . - ISSN 2073-4352
РУБ
Crystallography + Materials Science, Multidisciplinary
Рубрики:
RARE-EARTH
CRYSTAL-STRUCTURE
MAGNETIC-PROPERTIES
CHALCOGENIDES
Кл.слова (ненормированные):
rare earth elements
--
complex sulfides
--
chalcogenides
--
crystal structure
--
magnetic properties
Аннотация:
EuLnCuSe3 (Ln = Nd, Sm, Gd, Er), due to their complex composition, should be considered new materials with the ability to purposefully change the properties. Samples of the EuLnCuSe3 were prepared using Cu, rare earth metal, Se (99.99%) by the ampoule method. The samples were obtained by the crystallization from a melt and annealed at temperatures 1073 and 1273 K. The EuErCuSe3 crystal structure was established using the single-crystal particle. EuErCuSe3 crystallizes in the orthorhombic system, space group Cmcm, KCuZrS3 structure type, with cell parameters a = 4.0555 (3), b = 13.3570 (9), and c = 10.4602 (7) Å, V = 566.62 (6) Å3. In structure EuErCuSe3, erbium ions are coordinated by selenium ions in the octahedral polyhedron, copper ions are in the tetrahedral coordination, europium ions are between copper and erbium polyhedra layers and are coordinated by selenium ions as two-cap trigonal prisms. The optical band gap is 1.79 eV. At 4.7 K, a transition from the ferrimagnetic state to the paramagnetic state was detected in EuErCuSe3. At 85 and 293 K, the compound is in a paramagnetic state. According to XRPD data, EuLnCuSe3 (Ln = Nd, Sm, Gd) compounds have a Pnma orthorhombic space group of the Eu2CuS3 structure type. For EuSmCuSe3, a = 10.75704 (15) Å, b = 4.11120 (5) Å, c = 13.37778 (22) Å. In the series of EuLnCuSe3 compounds, the optical band gap increases 1.58 eV (Nd), 1.58 eV (Sm), 1.72 eV (Gd), 1.79 eV (Er), the microhardness of the 205 (Nd), 210 (Sm), 225 (Gd) 235 ± 4 HV (Er) phases increases, and the thermal stability of the phases increases significantly. According to the measurement data of differential scanning calorimetry, the EuNdCuSe3 decomposes, according to the solid-phase reaction T = 1296 K, ΔH = 8.2 ± 0.8 kJ/mol. EuSmCuSe3 melts incongruently T = 1449 K, ΔH = 18.8 ± 1.9 kJ/mol. For the EuGdCuSe3, two (Tα↔β = 1494 K, ΔHα↔β = 14.8 kJ/mol, Tβ↔γ = 1530 K, ΔHβ↔γ = 4.8 kJ/mol) and for EuErCuSe3 three polymorphic transitions (Tα↔β = 1561 K, ΔHα↔β = 30.3 kJ/mol, Tβ↔γ = 1579 K, ΔHβ↔γ = 4.4 kJ/mol, and Tγ↔δ = 1600 K, ΔHγ↔δ = 10.1 kJ/mol). The compounds melt incongruently at the temperature of 1588 K, ΔHmelt = 17.9 ± 1.8 kJ/mol and 1664 K, ΔHmelt = 25.6 ± 2.5 kJ/mol, respectively. Incongruent melting of the phases proceeds with the formation of a solid solution of EuSe and a liquid phase.
Смотреть статью
,
Scopus
,
WOS
,
Читать в сети ИФ
Держатели документа:
Univ Tyumen, Inst Chem, Tyumen 625003, Russia.
RAS, Inst Semicond Phys, Lab Opt Mat & Struct, SB, Novosibirsk 630090, Russia.
Kemerovo State Univ, Res & Dev Dept, Kemerovo 650000, Russia.
Novosibirsk State Tech Univ, Dept Ind Machinery Design, Novosibirsk 630073, Russia.
RAS, KSC, Fed Res Ctr, Kirensky Inst Phys,SB, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Photon & Laser Technol, Krasnoyarsk 660036, Russia.
Ind Univ Tyumen, Dept Gen & Special Chem, Tyumen 625000, Russia.
RAS, Boreskov Inst Catalysis, SB, Novosibirsk 630090, Russia.
Novosibirsk State Univ, Lab Mol Design & Ecol Safe Technol, Novosibirsk 630090, Russia.
RAS, Inst Solid State Chem, UB, Ekaterinburg 620990, Russia.
Доп.точки доступа:
Andreev, O. V.; Atuchin, V. V.;
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Denisenko, Y. G.; Zakharov, B. A.; Tyutyunnik, A. P.; Habibullayev, N. N.; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Ulybin, D. A.; Shpindyuk, D. D.; Ministry of Science and Higher Education of the Russian Ferderation [AAAA-A21-121011390011-4, AAAA-A19-119031890025-9]; Government of the Tyumen Region [2. 89-don]
}
Найти похожие
12.
Scheelite type microcrystalline
AgGd(MoO4)2:Yb3+/Ho3+ upconversion yellow phosphors by MES based synthesis and their spectroscopic properties for biomedical applications / Chang Sung LimWon-Chun Oh, A. S.
Aleksandrovsky
[et al.]> //
The 15th International conference on multifunctional materials and application. - 2021. - Ст. PO8. - P. 75-76. - Cited References: 4
Материалы конференции
,
Читать в сети ИФ
Доп.точки доступа:
Chang Sung Lim; Won-Chun Oh;
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Atuchin, V. V.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; International Conference on Multifunctional Materials and Application(15 ; 2021 ; Nov. 25-25 ; Nakhon Si Thammarat Rajabhat University, Thailand)
}
Найти похожие
13.
Microwave sol-gel derived
Ho3+/Yb3+ co-doped NaCaGd(MoO4)3 yellow phosphors and their upconversion photoluminescence properties for optoelectronic devices / Chang Sung LimWon-Chun Oh, A. S.
Aleksandrovsky
[et al.]> //
The 15th International conference on multifunctional materials and application. - 2021. - Ст. PO7. - P. 73-74. - Cited References: 4
Материалы конференции
,
Читать в сети ИФ
Доп.точки доступа:
Chang Sung Lim; Won-Chun Oh;
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Atuchin, V. V.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; International Conference on Multifunctional Materials and Application(15 ; 2021 ; Nov. 25-25 ; Nakhon Si Thammarat Rajabhat University, Thailand)
}
Найти похожие
14.
Преобразование излучения в
нелинейном фотонном кристалле тетрабората стронция / А. С. Александровский, А. М. Вьюнышев, А. И. Зайцев [и др.]> // Оптика и спектроскопия. - 2011. -
Т. 111
,
№ 2
. - С. 180-186 . - ISSN 0030-4034
ГРНТИ
29.31
Рубрики:
Аннотация:
В нелинейном фотонном кристалле (НФК) тетрабората стронция получена генерация второй гармоники фемтосекундных импульсов в режиме нелинейной дифракции, перестраиваемая в ближнюю ультрафиолетовую область спектра, с максимальной эффективностью 1.9%, а также генерация четвертой гармоники в условиях случайного квазисинхронизма, перестраиваемая в дальнюю ультрафиолетовую область спектра, с максимальной эффективностью 10-5. Эффективность генерации второй гармоники в условиях случайного квазисинхронизма в НФК тетрабората стронция была существенно ниже. Область перестройки излучения четвертой гармоники составила 187.5?232.5 нм. Экспериментально продемонстрирован предсказанный ранее красный сдвиг компонент в спектре генерируемого излучения при повороте НФК.
РИНЦ
Держатели документа:
Институт физики им. Л.В. Киренского Сибирского отделения РАН, 660036 Красноярск, Россия
Сибирский федеральный университет, 660041 Красноярск, Россия
Доп.точки доступа:
Александровский, Александр Сергеевич;
Aleksandrovsky
, A. S.; Вьюнышев, Андрей Михайлович; Vyunishev, A. M.; Зайцев, Александр Иванович; Zaitsev, A. I.; Иконников, Антон Андреевич; Поспелов, Г. И.; Ровский, В. Е.; Слабко, Виталий Васильевич; Slabko, V. V.
}
Найти похожие
15.
535.32/58
Г 34
Генерация четвертой гармоники
фемтосекундного лазера на титан-сапфире в нелинейном фотонном кристалле тетрабората стронция [Текст] / А. С. Александровский [и др.]> // Известия высших учебных заведений. Физика. - 2011. -
Т. 54
,
№ 2
. - С. 26-29 . - ISSN 0021-3411
ГРНТИ
29.31
УДК
535.32/58
Рубрики:
Кл.слова (ненормированные):
генерация второй гармоники
--
случайный квазифазовый синхронизм
--
нелинейный фотонный кристалл
--
тетраборат стронция
--
вакуумный ультрафиолет
Аннотация:
Получена перестраиваемая генерация четвертой гармоники излучения фемтосекундного лазера на титан-сапфире в нелинейном фотонном кристалле тетрабората стронция в спектральном диапазоне 187.5-215 нм. Средняя мощность генерируемого излучения достигает 1 мкВт. Эффективность преобразования в 320 раз превышает эффективность несинхронной генерации излучения в монодоменном образце. Спектр генерируемого излучения состоит из серии острых пичков. Наблюдался красный сдвиг спектра генерируемого излучения при повороте нелинейного фотонного кристалла.
РИНЦ
Держатели документа:
Институт физики им Л. В. Киренского СО РАН
Сибирский федеральный университет
Доп.точки доступа:
Александровский, Александр Сергеевич;
Aleksandrovsky
, A. S.; ВЬЮНЫШЕВ, Андрей Михайлович; ЗАЙЦЕВ, Александр Иванович; ИКОННИКОВ, Антон Андреевич; ПОСПЕЛОВ, Геннадий Игоревич; РОВСКИЙ, Владимир Евгеньевич; СЛАБКО, Виталий Васильевич
}
Найти похожие
16.
Quaternary selenides EuLnCuSe3:
Synthesis, structures, properties and in silico studies / M. V. Grigoriev, L. A. Solovyov, A. V. Ruseikina [et al.]> // Int. J. Mol. Sci. - 2022. -
Vol. 23
,
Is. 3
. - Ст. 1503,
DOI
10.3390/ijms23031503. - Cited References: 90 . - ISSN 1422-0067
Перевод заглавия:
Четвертичные селениды EuLnCuSe3: синтез, структура, свойства и компьютерное моделирование
РУБ
Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
RARE-EARTH
CRYSTAL-STRUCTURES
MAGNETIC-PROPERTIES
THERMOELECTRIC PERFORMANCE
Кл.слова (ненормированные):
inorganic materials
--
ab initio calculations
--
magnetic measurements
--
lattice dynamics
--
vibrational spectroscopy
--
optical spectroscopy
--
negative magnetization
Аннотация:
In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups Pnma (structure type Ba2MnS3 for EuLaCuSe3 and structure type Eu2CuS3 for EuLnCuSe3, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and Cmcm (structure type KZrCuS3 for EuLnCuSe3, where Ln = Tm, Yb and Lu). Space groups Pnma and Cmcm were delimited based on the tolerance factor t’, and vibrational spectroscopy additionally confirmed the formation of three structural types. With a decrease in the ionic radius of Ln3+ in the reported structures, the distortion of the (LnCuSe3) layers decreases, and a gradual formation of the more symmetric structure occurs in the sequence Ba2MnS3 → Eu2CuS3 → KZrCuS3. According to magnetic studies, compounds EuLnCuSe3 (Ln = Tb, Dy, Ho and Tm) each exhibit ferrimagnetic properties with transition temperatures ranging from 4.7 to 6.3 K. A negative magnetization effect is observed for compound EuHoCuSe3 at temperatures below 4.8 K. The magnetic properties of the discussed selenides and isostructural sulfides were compared. The direct optical band gaps for EuLnCuSe3, subtracted from the corresponding diffuse reflectance spectra, were found to be 1.87–2.09 eV. Deviation between experimental and calculated band gaps is ascribed to lower d states of Eu2+ in the crystal field of EuLnCuSe3, while anomalous narrowing of the band gap of EuYbCuSe3 is explained by the low-lying charge-transfer state. Ab initio calculations of the crystal structures, elastic properties and phonon spectra of the reported compounds were performed.
Смотреть статью
,
Scopus
,
WOS
,
Читать в сети ИФ
Держатели документа:
Univ Tyumen, Lab Theory & Optimizat Chem & Technol Processes, Tyumen 625003, Russia.
SB RAS, Inst Chem & Chem Technol, Fed Res Ctr KSC, Krasnoyarsk 660036, Russia.
Univ Tyumen, Inst Chem, Tyumen 625003, Russia.
Siberian Fed Univ, Dept Photon & Laser Technol, Krasnoyarsk 660079, Russia.
RAS, SB, Fed Res Ctr KSC, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Ural Fed Univ, Inst Nat Sci & Math, Mira Str 19, Ekaterinburg 620002, Russia.
Univ Tyumen, Inst Phys & Technol, Tyumen 625003, Russia.
Kemerovo State Univ, Res & Dev Dept, Kemerovo 650000, Russia.
Siberian Fed Univ, Inst Engn Phys & Radioelect, Krasnoyarsk 660079, Russia.
Siberian Fed Univ, Sch Engn & Construct, Krasnoyarsk 660041, Russia.
Univ Tyumen, Engn Ctr Composite Mat Based Wolfram Cpds & Rare, Tyumen 625003, Russia.
Univ Stuttgart, Inst Inorgan Chem, D-70569 Stuttgart, Germany.
Kurgan State Univ, Adv Mat Ind & Biomed Lab, Sovetskaya Str 63-4, Kurgan 640020, Russia.
Ural Fed Univ, Innovat Ctr Chem & Pharmaceut Technol, Mira Str 19, Ekaterinburg 620002, Russia.
Доп.точки доступа:
Grigoriev, Maxim V.; Solovyov, Leonid A.; Ruseikina, Anna V.;
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Chernyshev, Vladimir A.; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Garmonov, Alexander A.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Shestakov, N. P.; Шестаков, Николай Петрович; Matigorov, Alexey V.; Volkova, Svetlana S.; Ostapchuk, Evgeniy A.; Kertman, Alexander V.; Schleid, Thomas; Safin, Damir A.
}
Найти похожие
17.
Phase matched conversion
of radiation in nonlinear photonic crystals of strontium tetraborate / A. S.
Aleksandrovsky
[et al.]> // Proceedings of SPIE - The International Society for Optical Engineering. - 2011. -
Vol. 7993
: ICONO 2010: International Conference on Coherent and Nonlinear Optics (23 August 2010 through 26 August 2010, Kazan, ) Conference code: 83828,
DOI
10.1117/12.872943 . - ISBN 0277786X (ISSN); 9780819485663 (ISBN)
Кл.слова (ненормированные):
nonlinear photonic crystal
--
random quasi phase matching
--
second harmonic generation
--
strontium tetraborate
--
average power
--
deep uv
--
enhancement factor
--
fs pulse
--
monodomains
--
nonlinear photonic crystals
--
quasi-phase-matched frequency doubling
--
radiation source
--
random quasi phase matching
--
rotational shift
--
second harmonic generation
--
tetraborate
--
tuning ranges
--
band structure
--
harmonic generation
--
nonlinear optics
--
optical materials
--
phase matching
--
quantum optics
--
strontium
--
photonic crystals
Аннотация:
Random quasi-phase-matched frequency doubling of fs pulses to the deep UV was obtained in 1D nonlinear photonic crystal (NPC) of strontium tetraborate. Tuning range of generated radiation is from 187.5 to 215 nm. The spectrum of generated radiation consists from series of peaks with the width of order of 1 A. These peaks are the manifestation of the NPC band structure. Using fs oscillator as the fundamental radiation source, maximum average power of generated radiation is of order 1 ?W, the enhancement factor with respect to monodomain sample being of order of several hundred. The red rotational shift of NPC band structure is experimentally demonstrated. © 2011 SPIE.
Scopus
,
eLibrary
,
Источник статьи
,
WOS
Держатели документа:
Kirensky Institute of Physics, Akademgorodok 50/38, 660036, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodniy 79, 660041, Krasnoyarsk, Russian Federation
Доп.точки доступа:
Aleksandrovsky
, A.S.; Vyunishev, A.M.; Zaitsev, A.I.; Ikonnikov, A.A.; Pospelov, G.I.; Slabko, V.V.
}
Найти похожие
18.
Exploration of the
crystal structure and thermal and spectroscopic properties of monoclinic praseodymium sulfate Pr2(SO4)3 / Y. G. Denisenko, V. V. Atuchin, M. S. Molokeev [et al.]> // Molecules. - 2022. -
Vol. 27
,
Is. 13
. - Ст. 3966,
DOI
10.3390/molecules27133966. - Cited References: 95. - This research was funded by the Russian Science Foundation (project 21-19-00046, in part of conceptualization). Some parts of the experiments were performed in the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” . - ISSN 1420-3049
Перевод заглавия:
Исследование кристаллической структуры, термических и спектроскопических свойств моноклинного сульфата празеодима Pr2(SO4)3
Кл.слова (ненормированные):
praseodymium sulfate
--
crystal structure
--
thermal analysis
--
thermal expansion anisotropy
--
photoluminescence
--
band structure
--
vibrational properties
Аннотация:
Praseodymium sulfate was obtained by the precipitation method and the crystal structure was determined by Rietveld analysis. Pr2(SO4)3 is crystallized in the monoclinic structure, space group C2/c, with cell parameters a = 21.6052 (4), b = 6.7237 (1) and c = 6.9777 (1) Å, β = 107.9148 (7)°, Z = 4, V = 964.48 (3) Å3 (T = 150 °C). The thermal expansion of Pr2(SO4)3 is strongly anisotropic. As was obtained by XRD measurements, all cell parameters are increased on heating. However, due to a strong increase of the monoclinic angle β, there is a direction of negative thermal expansion. In the argon atmosphere, Pr2(SO4)3 is stable in the temperature range of T = 30–870 °C. The kinetics of the thermal decomposition process of praseodymium sulfate octahydrate Pr2(SO4)3·8H2O was studied as well. The vibrational properties of Pr2(SO4)3 were examined by Raman and Fourier-transform infrared absorption spectroscopy methods. The band gap structure of Pr2(SO4)3 was evaluated by ab initio calculations, and it was found that the valence band top is dominated by the p electrons of oxygen ions, while the conduction band bottom is formed by the d electrons of Pr3+ ions. The exact position of ZPL is determined via PL and PLE spectra at 77 K to be at 481 nm, and that enabled a correct assignment of luminescent bands. The maximum luminescent band in Pr2(SO4)3 belongs to the 3P0 → 3F2 transition at 640 nm.
Смотреть статью
,
Scopus
,
Читать в сети ИФ
Держатели документа:
Department of Inorganic and Physical Chemistry, Tyumen State University, Tyumen, 625003, Russian Federation
Department of General and Special Chemistry, Industrial University of Tyumen, Tyumen, 625000, Russian Federation
Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Giessen, 35392, Germany
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, 630090, Russian Federation
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation
Department of Applied Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation
R&D Center “Advanced Electronic Technologies”, Tomsk State University, Tomsk, 634034, Russian Federation
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
School of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation
Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
School of Engineering and Construction, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Research Department, Northern Trans-Ural Agricultural University, Tyumen, 625003, Russian Federation
Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Giessen, 35392, Germany
Доп.точки доступа:
Denisenko, Y. G.; Atuchin, V. V.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Sedykh, A. E.; Khritokhin, N. A.;
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Shestakov, N. P.; Шестаков, Николай Петрович; Adichtchev, S. V.; Pugachev, A. M.; Sal’nikova, E. I.; Andreev, O. V.; Razumkova, I. A.; Muller-Buschbaum, K.
}
Найти похожие
19.
Random quasi-phase-matching in
a nonlinear photonic crystal structure of strontium tetraborate / A. S.
Aleksandrovsky
, A. M. Vyunishev, I. E. Shakhura [et al.]> // Phys. Rev. A. - 2008. - P. 031802-1-031802-4
DOI
10.1103/PhysRevA.78.031802. - Библиогр.: 20. - This work was supported by RFBR Grant No. 02-07-00497, Grants of the President of the Russian Federation for the support of leading scientific schools No. SS-1011.2008.2 and No. SS-3818.2008.3 , Grant No. RNP.2.1.1.1814, and the Interdisciplinary Integration project of SB RAS 33.
Читать в сети ИФ
Доп.точки доступа:
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Vyunishev, A. M.; Вьюнышев, Андрей Михайлович; Shakhura, I. E.; Zaitsev, A. I.; Зайцев, Александр Иванович; Zamkov, A. V.; Замков, Анатолий Васильевич
}
Найти похожие
20.
Conversion of radiation
in nonlinear photonic crystals of strontium tetraborate / A. S.
Aleksandrovsky
[et al.]> // CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference = Optics InfoBase Conference Papers. - 2009,
DOI
10.1109/CLEOE-EQEC.2009.5196562 . - ISBN 9781424440801 (ISBN). - ISBN 21622701
Scopus
,
eLibrary
,
Источник статьи
,
eLibrary
,
Источник статьи
Держатели документа:
L. V. Kirensky Institute of Physics, Akademgorodok, 660036, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Доп.точки доступа:
Aleksandrovsky
, A. S.; Александровский, Александр Сергеевич; Vyunishev, A. M.; Вьюнышев, Андрей Михайлович; Slabko, V.V.; Zaitsev, A. I.; Зайцев, Александр Иванович; Zamkov, A. V.; Замков, Анатолий Васильевич; European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference(2009 ; Jun. ; 14-19 ; Munich)
}
Найти похожие
полный формат
краткий формат
все найденные
отмеченные
кроме отмеченных
Стандартный
Расширенный
Профессиональный
Распределенный
По словарю
ГРНТИ-навигатор
УДК-навигатор
Тематический навигатор
Другие библиотеки
Центральная Научная Библиотека КНЦ СО РАН
Библиотека института биофизики
Библиотека института химии и химический технологии
Библиотека института вычислительного моделирования
Библиотека института леса
Библиотека СФУ
Краевая научная библиотека
© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)