Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (13)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Complex<.>)
Общее количество найденных документов : 140
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-60      
1.


    Chistyakov, N. S.
    Constituents measurement of complex superhighfrequency susceptibility of magnetic films / N. S. Chistyakov, B. P. Tuschkov // International colloquium on physics of magnetic films : [program and abstracts] / chairman L. V. Kirensky ; vice-chaiman: V. A. Buravikhin, R. V. Telesnin ; progr. and publ. com. N. M. Salansky ; progr. com.: V. A. Ignatchenko, Yu. V. Zakharov [et al]. - Irkutsk, 1968. - Section Ferromagnetic resonance, spin-wave resonance, high-frequency properties. - Ст. 6-A.1. - P. 59

Держатели документа:
Институт физики СО АН СССР

Доп.точки доступа:
Tuschkov, B. P.; Чистяков, Николай Сергеевич; Академия наук СССР; Научный совет по комплексной проблеме "Физика твердого тела" АН СССРИнститут физики им. Л.В. Киренского Сибирского отделения РАН; Иркутский государственный педагогический институт; International colloquium on physics of magnetic films(3 ; 1968 ; 8-16 July ; Irkutsk); Международный коллоквиум по физике магнитных пленок(1968 ; 8-16 июля ; Иркутск)
Нет сведений об экземплярах (Источник в БД не найден)
}
Найти похожие
2.


   
    HYDROGEN COMPLEX OF PENTAFLUOROBENZENE WITH DIMETHYLSULFOXIDE / G. D. KHOLOPOVA [и др.] // Khimicheskaya Fiz. - 1984. - Vol. 3, Is. 4. - P. 618-619. - Cited References: 6 . - ISSN 0207-401X
РУБ Physics, Atomic, Molecular & Chemical


WOS
Доп.точки доступа:
KHOLOPOVA, G. D.; BONDARENKO, V. S.; KUZMIN, V. I.; RUBAILO, A. I.
}
Найти похожие
3.


    GAVRICHKOV, V. A.
    DISTORTION OF A COMPLEX DEFECT WITH A WEAK BINDING / V. A. GAVRICHKOV // Semiconductors. - 1993. - Vol. 27, Is. 10. - P. 921-924. - Cited References: 6 . - ISSN 1063-7826
РУБ Physics, Condensed Matter

Аннотация: A simple non-self-consistent approach is used in an analysis of the distortion of a complex defect characterized by a weak binding. The dependences of the magnitude of the distortion of a two-component defect on the position of its local population levels and on the number of carriers in a band are given.

WOS

Доп.точки доступа:
Гавричков, Владимир Александрович
}
Найти похожие
4.


    Varganov, S. A.
    Ab initio calculations of endo- and exohedral C-60 fullerene complexes with Li+ ion and the endohedral C-60 fullerene complex with Li-2 dimer / S. A. Varganov, P. V. Avramov, S. G. Ovchinnikov // Phys. Solid State. - 2000. - Vol. 42, Is. 2. - P. 388-392, DOI 10.1134/1.1131218. - Cited References: 16 . - ISSN 1063-7834
РУБ Physics, Condensed Matter
Рубрики:
ELECTRONIC-STRUCTURE
   ENERGIES

   C60

Аннотация: The results of ab initio Hartree-Fock calculations of endo- and exohedral C-60 fullerene complexes with the Li+ ion and Li-2 dimer are presented. The coordination of the Li+ ion and the Li-2 dimer in the endohedral complexes and the coordination of Li+ ion in the exohedral complex of C-60 fullerene are determined by the geometry optimization using the 3-21G basis set. In the endohedral Li+C60 complex, the Li+ ion is displaced from the center of the C-60 cage to the centers of carbon hexa- and pentagons by 0.12 nm. In the Li-2 dimer encapsulated inside the C-60 cage, the distance between the lithium atoms is 0.02 nm longer than that in the free molecule. The calculated total and partial one-electron densities of states of C-60 fullerene are in good agreement with the experimental photoelectron and X-ray emission spectra. Analysis of one-electron density of states of the endohedral Li+@C-60 complex indicates an ionic bonding between the Li atoms and the C-60 fullerene. In the Li+C60 and Li+@C-60 complexes, there is a strong electrostatic interaction between the Li+ ion and the fullerene. (C) 2000 MAIK "Nauka/Interperiodica".

WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Kirenskii Inst Phys, Siberian Div, Krasnoyarsk 660036, Russia
Siberian Aerosp Acad, Krasnoyarsk 660014, Russia
ИФ СО РАН

Доп.точки доступа:
Avramov, P. V.; Аврамов, Павел Вениаминович; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич
}
Найти похожие
5.


   
    Complex magnetic ground state of CuB2O4 / M. . Boehm [et al.] // Phys. Rev. B. - 2003. - Vol. 68, Is. 2. - Ст. 24405, DOI 10.1103/PhysRevB.68.024405. - Cited References: 16 . - ISSN 1098-0121
РУБ Physics, Condensed Matter
Рубрики:
COPPER METABORATE
   SCATTERING

Аннотация: The magnetic ground-state of copper metaborate CuB2O4 was investigated with unpolarized and polarized neutron scattering. A phase transition was found at T-N = 21 K to a commensurate weakly ferromagnetic state followed by a second transition at T* = 10 K to an incommensurate magnetic structure. Neutron diffraction revealed a continuously changing magnetic propagation vector below T*, and unusually asymmetric magnetic satellite reflections. Additionally, diffuse scattering is observed in the temperature range 1.5 K less than or equal to Tless than or equal to 30 K. The magnetic structure determined in both phases are shown to be consistent with results of symmetry analysis. In particular, we find that only one of the two inequivalent Cu2+ sublattice fully orders down to the lowest temperature. Our results show that the complex magnetic behavior of copper metaborate is a consequence of mutual interaction between the two Cu2+ sublattices with different ordering temperatures.

WOS,
Читать в сети ИФ
Держатели документа:
ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland
Paul Scherrer Inst, SINQ, CH-5232 Villigen, Switzerland
Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France
UCL, Dept Chem, London WC1H 0AJ, England
SB RAS, Inst Phys, Krasnoyarsk 660036, Russia
ИФ СО РАН

Доп.точки доступа:
Boehm, M.; Roessli, B.; Schefer, J.; Wills, A. S.; Ouladdiaf, B.; Lelievre-Berna, E.; Staub, U.; Petrakovskii, G. A.; Петраковский, Герман Антонович
}
Найти похожие
6.


    Rotter, I.
    Influence of branch points in the complex plane on the transmission through double quantum dots / I. . Rotter, A. F. Sadreev // Phys. Rev. E. - 2004. - Vol. 69, Is. 6. - Ст. 66201, DOI 10.1103/PhysRevE.69.066201. - Cited References: 25 . - ISSN 1539-3755
РУБ Physics, Fluids & Plasmas + Physics, Mathematical
Рубрики:
ELECTRON-ATOM SCATTERING
   S-MATRIX

   DOUBLE POLES

   CONTINUUM

   SYSTEM

   MODEL

Кл.слова (ненормированные):
Eigenvalues and eigenfunctions -- Hamiltonians -- Mathematical models -- Matrix algebra -- Probability -- Resonance -- Scattering -- Wave propagation -- Branch points -- Open quantum systems -- Propagating modes -- Quantum computing devices -- Semiconductor quantum dots
Аннотация: We consider single-channel transmission through a double quantum dot system consisting of two single dots that are connected by a wire and coupled each to one lead. The system is described in the framework of the S matrix theory by using the effective Hamiltonian of the open quantum system. It consists of the Hamiltonian of the closed system (without attached leads) and a term that accounts for the coupling of the states via the continuum of propagating modes in the leads. This model allows one to study the physical meaning of branch points in the complex plane. They are points of coalesced eigenvalues and separate the two scenarios with avoided level crossings and without any crossings in the complex plane. They influence strongly the features of transmission through double quantum dots.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
Linkoping Univ, Dept Phys & Measurement, S-58183 Linkoping, Sweden
Astafev Kransnoyarsk Pedag Univ, Krasnoyarsk 660049, Russia
ИФ СО РАН
Max-Planck-Inst. Phys. Komplexer S., D-01187 Dresden, Germany
Kirensky Institute of Physics, Krasnoyarsk, 660036, Russian Federation
Department of Physics, Linkoping University, S-581 83 Linkoping, Sweden
Astaf'ev Krasnoyarsk Pedagogical U., 89 Lebedeva, Krasnoyarsk, 660049, Russian Federation

Доп.точки доступа:
Sadreev, A. F.; Садреев, Алмаз Фаттахович
}
Найти похожие
7.


    Sadreev, A. F.
    Signatures of quantum chaos in complex wavefunctions describing open billiards / A. F. Sadreev, K. F. Berggren // J. Phys. A. - 2005. - Vol. 38, Is. 49. - P. 10787-10804, DOI 10.1088/0305-4470/38/49/019. - Cited References: 103 . - ISSN 0305-4470
РУБ Physics, Multidisciplinary + Physics, Mathematical
Рубрики:
TIME-REVERSAL SYMMETRY
   RANDOM-MATRIX

   STATISTICAL-THEORY

   ENERGY-LEVELS

   S-MATRIX

   CHARACTERISTIC VECTORS

   PHASE SINGULARITIES

   INFINITE DIMENSIONS

   BORDERED MATRICES

   NUCLEAR REACTIONS

Аннотация: We discuss signatures of quantum chaos in open chaotic billiards. Solutions for such a system are given by complex scattering wavefunctions psi = u + iv when a steady current flows through the billiard. For slightly opened chaotic billiards the current distributions are simple and universal. It is remarkable that the resonant transmission through integrable billiards also gives the universal current distribution. Cur-rents induced by the Rashba spin-orbit interaction can flow even in closed billiards. Wavefunction and current distributions for a chaotic billiard with weak and strong spin-orbit interactions have been derived and compared with numerics. Similarities with classical waves are considered. In particular we propose that the networks of electric resonance RLC circuits may be used to study wave chaos. However, being different from quantum billiards, there is a resistance from the inductors which gives rise to heat power and decoherence.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden
ИФ СО РАН
Kirensky Institute of Physics, 660036 Krasnoyarsk, Russian Federation
Department of Physics and Measurement Technology, Linkoping University, SE-581 83 Linkoping, Sweden

Доп.точки доступа:
Berggren, K. F.; Садреев, Алмаз Фаттахович
}
Найти похожие
8.


    Rotter, I.
    Avoided level crossings, diabolic points, and branch points in the complex plane in an open double quantum dot / I. . Rotter, A. F. Sadreev // Phys. Rev. E. - 2005. - Vol. 71, Is. 3. - Ст. 36227, DOI 10.1103/PhysRevE.71.036227. - Cited References: 49 . - ISSN 1063-651X
РУБ Physics, Fluids & Plasmas + Physics, Mathematical
Рубрики:
BERRY TOPOLOGICAL PHASE
   EXCEPTIONAL POINTS

   GEOMETRIC PHASES

   NUCLEAR REACTIONS

   RESONANCE STATES

   UNIFIED THEORY

   S-MATRIX

   CONTINUUM

   REPULSION

   INTERFEROMETER

Кл.слова (ненормированные):
Branch points in the complex plane (BPCP) -- Diabolic points (DP) -- Geometric phases -- Riemann sheets -- Eigenvalues and eigenfunctions -- Electron energy levels -- Functions -- Hamiltonians -- Quantum theory -- Resonance -- Topology -- Semiconductor quantum dots
Аннотация: We study the spectrum of an open double quantum dot as a function of different system parameters in order to receive information on the geometric phases of branch points in the complex plane (BPCP). We relate them to the geometrical phases of the diabolic points (DPs) of the corresponding closed system. The double dot consists of two single dots and a wire connecting them. The two dots and the wire are represented by only a single state each. The spectroscopic values follow from the eigenvalues and eigenfunctions of the Hamiltonian describing the double dot system. They are real when the system is closed, and complex when the system is opened by attaching leads to it. The discrete states as well as the narrow resonance states avoid crossing. The DPs are points within the avoided level crossing scenario of discrete states. At the BPCP, width bifurcation occurs. Here, different Riemann sheets evolve and the levels do not cross anymore. The BPCP are physically meaningful. The DPs are unfolded into two BPCP with different chirality when the system is opened. The geometric phase that arises by encircling the DP in the real plane, is different from the phase that appears by encircling the BPCP. This is found to be true even for a weakly opened system and the two BPCP into which the DP is unfolded.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
Astafev Krasnoyarsk Pedag Univ, Krasnoyarsk 660049, Russia
ИФ СО РАН
Max-Planck-Inst. Physik Komplexer S., D-01187 Dresden, Germany
Kirensky Institute of Physics, 660036, Krasnoyarsk, Russian Federation
Dept. of Physics and Measurement, Technology Linkoping University, S-581 83 Linkoping, Sweden
Astafev Krasnoyarsk Pedagogical U., 660049 Krasnoyarsk, Russian Federation

Доп.точки доступа:
Sadreev, A. F.; Садреев, Алмаз Фаттахович
}
Найти похожие
9.


   
    Preparation and crystal structure of hydrated crystalline complex of ciprofloxacin and copper tetrachloride / A. D. Vasil'ev [et al.] // J. Struct. Chem. - 2005. - Vol. 46, Is. 2. - P. 363-370, DOI 10.1007/s10947-006-0055-8. - Cited Reference Count: 16 . - ISSN 0022-4766
Аннотация: Synthesis of a complex formed by ciprofloxacin (cfH) and copper(II) chloride is described; its crystal structure is reported and analyzed in comparison to related compounds. The obtained compound (ctH(3))CuCl4 center dot H2O (cfH(3)(2+) - double protonated cfH molecule) crystallizes as platelets of P2(1)/c symmetry having the unit cell parameters a = 13.491 (1) angstrom, b = 11.0459(7) angstrom, c = 16.299(1) angstrom; beta = 1.392(7)degrees. Carbonyl oxygen O(1) is protonated, and hydrogen atom combined with it forms an intramolecular hydrogen bond with carboxylic O(2) oxygen (O(1) center dot center dot center dot O(2) = 2.642(5) angstrom). Terminal nitrogen atom N(3) of the piperazinyl group is also protonated, and two its hydrogen atoms participate in hydrogen bonds of N-H center dot center dot center dot Cl type. The structure also has hydrogen bonds O-H center dot center dot center dot O, O-H... Cl with the participation of water molecules which occupy hydrophilic channels. Molecular ions cfH(3)(2+), make couples with intrapair pi center dot center dot center dot pi interactions.

WOS,
eLibrary,
Scopus

Оригинал на русском языке


Доп.точки доступа:
Vasil'ev, A. D.; Васильев, Александр Дмитриевич; Molokeev, M. S.; Молокеев, Максим Сергеевич; Golovnev, N.N.; Churilov, G. N.; Чурилов, Григорий Николаевич
}
Найти похожие
10.


    Bulgakov, E. N.
    Phase rigidity and avoided level crossings in the complex energy plane / E. N. Bulgakov, I. . Rotter, A. F. Sadreev // Phys. Rev. E. - 2006. - Vol. 74, Is. 5. - Ст. 56204, DOI 10.1103/PhysRevE.74.056204. - Cited References: 40 . - ISSN 1539-3755
РУБ Physics, Fluids & Plasmas + Physics, Mathematical
Рубрики:
OPEN QUANTUM-SYSTEMS
   FANO RESONANCES

   S-MATRIX

   DOT

   CONTINUUM

   TRANSMISSION

   COHERENCE

   TRANSPORT

   BILLIARDS

   PROBE

Кл.слова (ненормированные):
Eigenvalues and eigenfunctions -- Hamiltonians -- Resonance -- Rigidity -- Semiconductor quantum dots -- Biorthogonal eigenfunctions -- Open quantum system -- Phase rigidity -- Quantum theory
Аннотация: We consider the effective Hamiltonian of an open quantum system, its biorthogonal eigenfunctions phi(lambda), and define the value r(lambda)=(phi(lambda)parallel to phi(lambda))/ that characterizes the phase rigidity of the eigenfunctions phi(lambda). In the scenario with avoided level crossings, r(lambda) varies between 1 and 0 due to the mutual influence of neighboring resonances. The variation of r(lambda) is an internal property of an open quantum system. In the literature, the phase rigidity rho of the scattering wave function Psi(E)(C) is considered. Since Psi(E)(C) can be represented in the interior of the system by the phi(lambda), the phase rigidity rho of the Psi(E)(C) is related to the r(lambda) and therefore also to the mutual influence of neighboring resonances. As a consequence, the reduction of the phase rigidity rho to values smaller than 1 should be considered, at least partly, as an internal property of an open quantum system in the overlapping regime. The relation to measurable values such as the transmission through a quantum dot, follows from the fact that the transmission is, in any case, resonant at energies that are determined by the real part of the eigenvalues of the effective Hamiltonian. We illustrate the relation between phase rigidity rho and transmission numerically for small open cavities.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
ИФ СО РАН
Max-Planck-Institut fur Physik Komplexer Systeme, D-01187 Dresden, Germany
Kirensky Institute of Physics, 660036 Krasnoyarsk, Russian Federation
Department of Physics and Measurement, Technology Linkoping University, S-581 83 Linkoping, Sweden

Доп.точки доступа:
Rotter, I.; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Булгаков, Евгений Николаевич
}
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-60      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)