Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Wire<.>)
Общее количество найденных документов : 15
Показаны документы с 1 по 10
 1-10    11-15 
1.


    Вальков, Валерий Владимирович.
    Квантовый транспорт через одномерную цепочку, согнутую в форме квадрата, при учете спин-орбитального взаимодействия Рашбы / В. В. Вальков, А. Д. Федосеев // 20-й Междунар. симп. "Порядок, беспорядок и свойства оксидов" (ODPO-20) : труды симпозиума. - 2017. - Вып. 20, Т. 1. - С. 30-34. - Библиогр.: 5 назв.
   Перевод заглавия: Quantum transport through the 1D square-shaped wire with Rashba spin-orbit coupling
Аннотация: В приближении сильной связи при использовании формализма Ландауэра-Бюттикера исследованы транспортные свойства одномерной цепочки, согнутой в форме квадрата при учете спин-орбитального взаимодействия Рашбы. Обнаружено, что такая геометрия устройства, приводит к возникновению антирезонансов Фано. Показано, что при критической величине спин-орбитального взаимодействия, когда характеристическая длина, связанная с величиной спин-орбитального взаимодействия, совпадает с длиной стороны квадрата, возникает полное отражение от устройства. При величине параметра спин-орбитального взаимодействия близкого к критическому значению прохождение электрона возможно только при энергиях, находящихся в пределах узких интервалов.

Материалы конференции
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Федосеев, Александр Дмитриевич; Fedoseev, A. D.; Val'kov, V. V.; Южный федеральный университет; "Порядок, беспорядок и свойства оксидов", международный междисциплинарный симпозиум(20 ; 2017 ; 5-10 сент. / Ростов-на-Дону / Южный, Ростовская обл.); "Order, Disorder and Properties of Oxides", International meeting(20 ; 2017 г. ; sent. ; 5-10 / Rostov-on-Don / Yuzhny, Russia)
}
Найти похожие
2.


    Val'kov, V. V.
    The nonuniform spin polarization in the square-shaped 1D wire induced by spin-orbit coupling / V. V. Val'kov, A. D. Fedoseev // J. Magn. Magn. Mater. - 2017. - Vol. 440. - P. 185-188, DOI 10.1016/j.jmmm.2016.12.080. - Cited References: 9. - The reported study was funded by Russian Foundation for Basic Research project nos. 16-42-242036, 16-42-243056, Government of Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund to the research project nos. 21/16, 29/16. . - ISSN 0304-8853
РУБ Materials Science, Multidisciplinary + Physics, Condensed Matter

Кл.слова (ненормированные):
Spin polarization -- Rashba spin-orbit coupling
Аннотация: It is shown, that the Rashba spin-orbit coupling induces the spatially nonuniform spin state in the square-shaped 1D wire. The electron states of this type are characterized with spin orientation changing according to the harmonic motion along the square side. The period of the oscillation is determined only by the spin-orbital coupling and the hopping parameters ratio. The modulation of spin orientation is caused by step-like changing of Rashba field direction. The obtained results were generalized on the case of polygon-shaped wire.
Показано, что спин-орбитальное взаимодействие Рашбы индуцирует пространственно неоднородное спиновое состояние в 1D цепочке формы квадрата. Такие электронные состояния характеризуются изменением ориентации спина по гармоническому закону вдоль стороны квадрата. Период осцилляций определяется только отношением параметров перескока и спин-орбитального взаимодействия. Модуляция спиновой ориентации вызвана скачкообразным изменением направления поля Рашбы. Проведено обобщение полученных результатов на случай цепочке формы правильного многоугольника.

Смотреть статью,
WOS,
Читать в сети ИФ

Доп.точки доступа:
Fedoseev, A. D.; Федосеев, Александр Дмитриевич; Вальков, Валерий Владимирович; Euro-Asian Symposium "Trends in MAGnetism"(6 ; 2016 ; Aug. ; 15-19 ; Krasnoyarsk); "Trends in MAGnetism", Euro-Asian Symposium(6 ; 2016 ; Aug. ; 15-19 ; Krasnoyarsk); Институт физики им. Л.В. Киренского Сибирского отделения РАН
}
Найти похожие
3.


    Val'kov, V. V.
    Spin-polarized transport through Majorana bound states in a canted magnetic field / V. V. Val'kov, S. V. Aksenov // VI Euro-Asian Symposium "Trends in MAGnetism" (EASTMAG-2016) : abstracts / ed.: O. A. Maksimova, R. D. Ivantsov. - Krasnoyarsk : KIP RAS SB, 2016. - Ст. O4.1. - P. 221. - References: 3. - This study was supported by the Comprehensive programme SB RAS no.0358-2015-0007, the Russian Foundation for Basic Research, projects nos. 15-42- . - ISBN 978-5-904603-06-9
Кл.слова (ненормированные):
semiconducting wire -- Majorana fermions -- topological superconductivity


Доп.точки доступа:
Aksenov, S. V.; Аксенов, Сергей Владимирович; Вальков, Валерий Владимирович; Euro-Asian Symposium "Trends in MAGnetism"(6 ; 2016 ; Aug. ; 15-19 ; Krasnoyarsk); "Trends in MAGnetism", Euro-Asian Symposium(6 ; 2016 ; Aug. ; 15-19 ; Krasnoyarsk); Институт физики им. Л.В. Киренского Сибирского отделения РАН

Нет сведений об экземплярах }
Найти похожие
4.


   
    Theoretical study of elastic properties of SiC nanowires of different shapes / P. B. Sorokin [et al.] // J. Nanosci. Nanotechnol. - 2010. - Vol. 10, Is. 8. - P. 4992-4997, DOI 10.1166/jnn.2010.2424. - Cited Reference Count: 49. - Гранты: This work was partially supported by JSPS-RFBR collaborative grant 09-02-92107. The electronic structure calculations have been performed on the Joint Supercomputer Centre of the Russian Academy of Sciences. One of the authors (Pavel V. Avramov) acknowledges the encouragement of Professor K. Morokuma, research leader of Fukui Institute, Kyoto University and Dr. Alister Page for kind help and support. The geometry of all structures was visualized by ChemCraft software.SUP53/SUP. - Финансирующая организация: JSPS-RFBR [09-02-92107]; Fukui Institute, Kyoto University . - ISSN 1533-4880. - ISSN 1533-4899
Рубрики:
INITIO MOLECULAR-DYNAMICS
   SILICON-CARBIDE

   THERMAL-STABILITY

   CARBON NANOTUBES

   NANORODS

   GROWTH

   SURFACES

   NANOCRYSTALS

   POTENTIALS

   CONSTANTS

Кл.слова (ненормированные):
Silicon Carbide -- Nanowires -- Elastic Properties -- DFT -- Molecular Mechanics -- DFT -- Elastic properties -- Molecular mechanics -- Nanowires -- Silicon carbide -- Atomic structure -- Cubic phasis -- DFT -- Effective size -- Elastic properties -- SiC nanowire -- Silicon carbide nanowires -- Theoretical study -- Wire geometries -- Young's Modulus -- Crystal atomic structure -- Density functional theory -- Elastic moduli -- Elasticity -- Molecular mechanics -- Nanowires -- Wire -- Silicon carbide
Аннотация: The atomic structure and elastic properties of silicon carbide nanowires of different shapes and effective sizes were studied using density functional theory and classical molecular mechanics. Upon surface relaxation, surface reconstruction led to the splitting of the wire geometry, forming both hexagonal (surface) and cubic phases (bulk). The behavior of the pristine SiC wires under compression and stretching was studied and Young's moduli were obtained. For Y-shaped SiC nanowires the effective Young's moduli and behavior in inelastic regime were elucidated.

WOS,
Scopus,
eLibrary
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia
Russian Acad Sci, Emanuel Inst Biochem Phys, Moscow 119334, Russia
Russian Acad Sci, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Sorokin, P.B.; Kvashnin, D.G.; Kvashnin, A.G.; Avramov, P. V.; Аврамов, Павел Вениаминович; Chernozatonskii, L.A.
}
Найти похожие
5.


   
    Study of magnetic flux pinning in granular YBa2Cu3O7-y / nanoZrO2 composites / A. V. Ushakov [et al.] // JETP Letters. - 2014. - Vol. 99, Is. 2. - P. 99-103, DOI 10.1134/S002136401402009X. - Cited References: 15. - This work was supported in part by the Ministry of Education and Sciences of the Russian Federation (project no. 7.4484.2011). . - ISSN 0021-3640. - ISSN 1090-6487
РУБ Physics, Multidisciplinary
Рубрики:
TEMPERATURE SUPERCONDUCTING WIRE
   CRITICAL-CURRENT-DENSITY

   FILMS

Аннотация: IIn this work, the effect of ZrO2 nanoparticles prepared in a low-pressure arc discharge plasma on magnetic flux pinning of granular YBa2Cu3O7-y /nanoZrO2 composites has been studied. It has been shown that the ZrO2 nanoparticles do not change the superconducting transition and the microstructure of superconductors. At a temperature of 5 K, the addition of 0.5 and 1 wt % of ZrO2 nanoparticles may lead to the additional effect of magnetic flux pinning and the increase in the critical current density J c. The J c value for composites with 1 wt % is two times larger than that for the reference sample. The fishtail effect is observed for YBa2Cu3O7-y /nanoZrO2 composites at the temperatures of 20 and 50 K. The problems associated with the additional effect of magnetic flux pinning of granular YBa2Cu3O7-y /nanoZrO2 composites and the appearance of the fishtail effect have been discussed.

Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ

Публикация на русском языке Исследование пиннинга магнитного потока в YBa2Cu3O7-y/наноZrO2 гранулярных композитах [Текст] / А. В. Ушаков [и др.] // Письма в Журн. эксперим. и теор. физ. : Наука, 2014. - Т. 99 Вып. 1-2. - С. 105-109

Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660074, Russia
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia
Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Ushakov, A. V.; Karpov, I. V.; Lepeshev, A. A.; Petrov, M. I.; Петров, Михаил Иванович; Fedorov, L. Y.; Ministry of Education and Sciences of the Russian Federation [7.4484.2011]
}
Найти похожие
6.


    Shustin, M. S.
    Stable Majorana modes in spin-polarized wire with strong interactions / M. S. Shustin // J. Supercond. Novel Magn. - 2022. - Vol. 35, Is. 8 : The Kourovka Winter School of Theoretical Physics. - P. 2209-2216, DOI 10.1007/s10948-022-06238-0. - Cited References: 42. - The study was funded by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (Grant No. 20-1-4-25-1); Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Project No. 20-42-243001); and Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (Grant No. MK-4687.2022.1) . - ISSN 1557-1939
   Перевод заглавия: Устойчивые майорановские моды в спин-поляризованной проволоке с сильными взаимодействиями
Кл.слова (ненормированные):
Majorana modes -- Quantum wires -- Strong electron correlations -- High spin polarization
Аннотация: For the 1D Hubbard model with spin-orbit coupling and proximity-induced s-wave superconductivity, the damping rates of quasiparticles are studied in the framework of density-matrix renormalization group (DMRG) approach. It is shown that low-energy excitations belonging to the Hubbard bands are stable against strong electron interaction at the spin-polarized regime. In order to confirm this result analytically, the low-energy model of the strongly interacting spin-polarized nanowire was derived in the second order of perturbation theory. This model generalizes Kitaev chain, taking into account the hoppings and anomalous pairings in the secondary coordination spheres as well as terms describing charge correlations. The amplitudes of the latter ones are small, and the system can be effectively described by quadratic Hamiltonian supporting stable Majorana excitations, which confirms numerical calculations. The topological phase diagram of effective model is studied in the framework of mean-field approximation. The evolution of topological phase boundaries under increasing of charge correlations is studied, and the important role of the joint realization of different types of interactions is noted. The results obtained can be applied when describing the Al-EuS-InAs hybrid system, recently synthesized and studied in searching for Majorana bound states.

Смотреть статью,
Scopus
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Шустин, Максим Сергеевич
}
Найти похожие
7.


    Sadreev, A. F.
    Trapping of an electron in the transmission through two quantum dots coupled by a wire / A. F. Sadreev, E. N. Bulgakov, I. . Rotter // JETP Letters. - 2005. - Vol. 82, Is. 8. - P. 498-503, DOI 10.1134/1.2150869. - Cited References: 32 . - ISSN 0021-3640
РУБ Physics, Multidisciplinary
Рубрики:
NUCLEAR REACTIONS
   CIRCULAR BENDS

   UNIFIED THEORY

   WAVE-GUIDES

   S-MATRIX

   STATES

   BILLIARD

   SYSTEMS

Аннотация: We consider single-channel transmission through a double quantum dot that consists of two identical single dots coupled by a wire. The numerical solution for the scattering wave function shows that the resonance width of a few of the states may vanish when the width (or length) of the wire and the energy of the incident particle each take a certain value. In such a case, a particle is trapped inside the wire as the numerical visualization of the scattering wave function shows. To understand these numerical results, we explore a simple model with a small number of states, which allows us to consider the problem analytically. If the eigenenergies of the closed system cross the energies of the transmission zeroes, the wire effectively decouples from the rest of the system and traps the particle. (C) 2005 Pleiades Publishing, Inc.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Phys, Krasnoyarsk 660036, Russia
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
ИФ СО РАН
Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Department of Physics and Measurement Technology, Linkoping University, S-58183 Linkoping, Sweden
Max-Planck-Institut fur Physik Komplexer Systeme, D-01187 Dresden, Germany

Доп.точки доступа:
Bulgakov, E. N.; Булгаков, Евгений Николаевич; Rotter, I.; Садреев, Алмаз Фаттахович
}
Найти похожие
8.


    Sadreev, A. F.
    Effect of gate-driven spin resonance on the conductance through a one-dimensional quantum wire / A. F. Sadreev, E. Ya. Sherman // Phys. Rev. B. - 2013. - Vol. 88, Is. 11. - Ст. 115302. - P. , DOI 10.1103/PhysRevB.88.115302 . - ISSN 1098-0121
   Перевод заглавия: Эффект гейт-управляемого спинового резонанса на проводимость в одномерной
Аннотация: We consider quasiballistic electron transmission in a one-dimensional quantum wire subject to both time-independent and periodic potentials of a finger gate that results in a local time-dependent Rashba-type spin-orbit coupling. A spin-dependent conductance is calculated as a function of external constant magnetic field, the electric field frequency, and potential strength. The results demonstrate the effect of the gate-driven electric dipole spin resonance in a transport phenomenon such as spin-flip electron transmission. В© 2013 American Physical Society.

Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
Univ Pais Vasco UPV EHU, Dept Phys Chem, Bilbao 48080, Spain
Basque Fdn Sci, IKERBASQUE, Bilbao, Spain

Доп.точки доступа:
Sherman, E. Ya.; Садреев, Алмаз Фаттахович
}
Найти похожие
9.


    Sadreev, A. F.
    Bound states in the continuum in zigzag quantum wire enforced by a finger gate / A. F. Sadreev, A. S. Pilipchuk // JETP Letters. - 2015. - Vol. 100, Is. 9. - P. 585-590, DOI 10.1134/S0021364014210139. - Cited References:41. - This work was supported by the Russian Foundation for Basic Research(project no. 14-12-00266). . - ISSN 0021. - ISSN 1090-6487. -
РУБ Physics, Multidisciplinary
Рубрики:
WAVE-GUIDE
   DOUBLE-BEND

   SYSTEMS

   TRANSMISSION

   RESONANCES

   ELECTRON

Аннотация: We consider electron transport in a zigzag quantum wire by the effect of finger gate potential. Using a non-Hermitian effective Hamiltonian, we calculate resonance positions and widths to show that the resonance widths are easily governed by the gate potential. In particular, the resonance width can be enforced to be equal to zero, which leads to an electron localization with the Fermi energy embedded in the propagation band of the wire, i.e., the bound state in the continuum (BSC). We show that, for positive values of the potential, a zigzag wire becomes a Fabry-Perot resonator to give rise to BSC too.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Садреев, Алмаз Фаттахович. Связанные состояния в континууме, инициированные потенциалом электрода в зигзагообразной квантовой проволоке [Текст] / А. Ф. Садреев, А. C. Пилипчук // Письма в Журн. эксперим. и теор. физ. - 2014. - Т. 100 Вып. 9-10. - С. 664– 669

Держатели документа:
Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660080, Russia.

Доп.точки доступа:
Pilipchuk, A. S.; Пилипчук, Артем Сергеевич; Садреев, Алмаз Фаттахович; Russian Foundation for Basic Research [14-12-00266]
}
Найти похожие
10.


   
    Quantum dots embedded into silicon nanowires effectively partition electron confinement / P. V. Avramov [et al.] // J. Appl. Phys. - 2008. - Vol. 104, Is. 5. - Ст. 54305, DOI 10.1063/1.2973464. - Cited References: 22. - This work was, in part, partially supported by a Core Research for Evolutional Science and Technology (CREST) grant in the area of high performance computing for multi-scale and multiphysics phenomena from the Japan Science and Technology Agency (JST) as well as by the Russian Fund of Basic Researches (Grant No. 05-02-17443) (L.A.C.). One of the authors (P.V.A.) acknowledges the encouragement of Dr. Keiji Morokuma, Research Leader at Fukui Institute. The geometry of all presented structures was visualized by ChemCraft software. SUP23/SUP L.A.C. acknowledges I. V. Stankevich for help and fruitful discussions. P.B.S. is grateful to the Joint Supercomputer Center of the Russian Academy of Sciences for access to a cluster computer for quantum-chemical calculations. . - ISSN 0021-8979
РУБ Physics, Applied
Рубрики:
OPTICAL-PROPERTIES
   POROUS SILICON

   WIRES

   PREDICTION

   GROWTH

Кл.слова (ненормированные):
Electric currents -- Electric wire -- Electronic states -- Electronic structure -- Nanostructured materials -- Nanostructures -- Nanowires -- Nonmetals -- Optical waveguides -- Plasma confinement -- Quantum confinement -- Quantum electronics -- Semiconducting silicon compounds -- Silicon -- electronic state -- Band gaps -- Electron confinements -- Electronic-structure calculations -- Embedded structures -- Quantum confinement effect -- Quantum dots -- Semi-empirical methods -- Silicon nanowires -- Silicon quantum dots -- Semiconductor quantum dots
Аннотация: Motivated by the experimental discovery of branched silicon nanowires, we performed theoretical electronic structure calculations of icosahedral silicon quantum dots embedded into pentagonal silicon nanowires. Using the semiempirical method, we studied the quantum confinement effect in the fully optimized embedded structures. It was found that (a) the band gaps of the embedded structures are closely related to the linear sizes of the longest constituting part rather than to the total linear dimension and (b) the discovered atypical quantum confinement with a plateau and a maximum can be attributed to the substantial interactions of near Fermi level electronic states of the quantum dots and nanowire segments. (c) 2008 American Institute of Physics.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Avramov, Pavel V.] Kyoto Univ, Fukui Inst Fundamental Chem, Kyoto 6068103, Japan
[Fedorov, Dmitri G.] Natl Inst Adv Ind Sci & Technol, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan
[Sorokin, Pavel B.
Ovchinnikov, Sergei G.] LV Kirensky Inst Phys SB RAS, Krasnoyarsk 660036, Russia
[Sorokin, Pavel B.
Ovchinnikov, Sergei G.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Sorokin, Pavel B.
Chernozatonskii, Leonid A.] RAS, NM Emanuel Inst Biochem Phys, Moscow 119334, Russia
ИФ СО РАН
Fukui Institute for Fundamental Chemistry, Kyoto University, 34-3 Takano Nishihiraki, Sakyo, Kyoto 606-8103, Japan
Research Institute for Computational Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8568, Japan
L.V. Kirensky Institute of Physics, SB, RAS, 660036 Krasnoyarsk, Russian Federation
Siberian Federal University, 79 Svobodny Av., 660041 Krasnoyarsk, Russian Federation
N.M. Emanuel Institute of Biochemical Physics, RAS, 119334 Moscow, Russian Federation

Доп.точки доступа:
Avramov, P. V.; Аврамов, Павел Вениаминович; Fedorov, D. G.; Sorokin, P. B.; Chernozatonskii, L. A.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич
}
Найти похожие
 1-10    11-15 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)