Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=radar<.>)
Общее количество найденных документов : 21
Показаны документы с 1 по 10
 1-10    11-21   21-21 
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Savin I. V., Muzalevskiy K. V., Mironov V. L.
Заглавие : A dielectric model of thawed and frozen Arctic organic soils at 435 MHz
Коллективы : SB RAS project [0287-2021-0034]
Место публикации : Remote Sens. Lett. - 2022. - Vol. 13, Is. 5. - P.452-459. - ISSN 2150-704X, DOI 10.1080/2150704X.2022.2041761. - ISSN 2150-7058(eISSN)
Примечания : Cited References: 15. - This work was supported by the SB RAS project No. 0287-2021-0034
Предметные рубрики: P-BAND RADAR
Аннотация: A refractive-mixing dielectric model for frozen and thawed organic-rich soils at a frequency of 435 MHz was developed in this letter. The model was developed based on the dielectric measurements of five soil samples in which organic matter content was variated from 35% to 80% (by weight). Dielectric measurements were conducted in the range of volumetric soil moisture from ~2% to 60%, and the range of temperature from −30°C to 25°C. Coefficient of determination (R2) and root mean square error (RMSE) between predicted by the model and measured values for real (ε ') and imaginary (ε '') part of complex relative permittivity are R2ε '= 0.989 (RMSEε '=0.602) and R2ε ''= 0.906 (RMSEε ''=0.404), respectively. The developed dielectric model can be used for creating remote sensing algorithms (soil moisture retrieval in the root zone, active layer thickness and ice content measuring in permafrost area, etc.) in P-band.
Смотреть статью,
Scopus,
WOS
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Epov M. I., Mironov V. L., Muzalevskiy K. V., Eltsov I. N., Salomatov U. P.
Заглавие : A geosteering tool for horizontal well logging
Место публикации : Rus. Geol. Geophys. - 2013. - Vol. 54, Is. 9. - P.1103-1107. - ISSN 1068-7971, DOI 10.1016/j.rgg.2013.07.022
Ключевые слова (''Своб.индексиров.''): downhole radar--geosteering--oil-water contact--saturated formation--ultrabroadband nanosecond electromagnetic pulse
Аннотация: A theoretical study has been performed to check the possibility of using ultrabroadband nanosecond electromagnetic pulses as a geosteering tool for horizontal drilling to estimate the distance to the oil-water contact (OWC) in a floating oil accumulation. The voltage of a microwave-bandwidth pulse at the dipole receiver of a downhole radar was modeled for the case of a horizontal borehole near OWC in a formation saturated with oil and water. Numerical solutions to the boundary problem formulated on the basis of the Maxwell equations were obtained with the Microwave Studio software (www.cst.com). The frequency-dependent dielectric constants of the layered saturated formation and the drilling fluid were assumed according to experimentally tested models. The modeling has demonstrated that nanosecond electromagnetic pulses arriving from a layered oil-water contact can in principle be acquired and the distance from the wellbore to the OWC median can be inferred from the respective time delays recorded by a downhole radar. Additionally, the possible dynamic range and accuracy of sensing have been estimated. В© 2013.
Scopus,
Смотреть статью
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Muzalevskiy K. V.
Заглавие : A new method for remote sensing of moisture profiles in the arable layer at three frequencies; experimental case study
Место публикации : Int. J. Remote Sens. - 2021. - Vol. 42, Is. 7. - P.2377-2390. - ISSN 01431161 (ISSN), DOI 10.1080/01431161.2020.1851795
Примечания : Cited References: 35. - This work was supported by the Russian Foundation for Basic Research (grant No. 18-05-00405) in part of the sensing depth investigation and retrieving soil moisture. The method of the formation of radio impulses was created in part of SB RAS project No. 0356-2019-0004
Аннотация: In this paper, the possibilities of remote sensing of moisture profiles in the arable layer were theoretically and experimentally studied based on the nadir measurements of reflection coefficients at three frequencies of 1.26 GHz, 796 MHz and 641 MHz. The reflection coefficients were measured by the impulse method during natural cycles of evaporation and moistening of an arable layer at the agricultural field being under steam, located at 56°05ʹN, 92°40ʹ E in the area of the Minino village, Krasnoyarsk region, the Russian Federation. The soil moisture profiles were retrieved in the course of solving the inverse problem, in which the reflection coefficients at different frequencies acted as an informative sign. The root-mean-square error and the determination coefficient (R 2) between retrieved and measured moisture values in the topsoil thickness of 0.15 m were 3.3% and 0.79, respectively. In the course of theoretical calculations, it was shown that in practice, it is impossible to predict the sensing depth of the arable layer without preliminary information on the form of moisture profile. Moreover, the sensing depth depends not only on the form of soil moisture profile but also on frequency. In this regard, it is impossible to correlate the effective soil moisture, retrieved from single-frequency measurements of the reflection coefficient in the approximation of homogeneous topsoil, with the specific thickness of topsoil. The study shows the promise of developing multi-frequency radar systems for remote sensing of soil moisture profiles in the arable layer, the potential of which can be realized on lightweight unmanned area vehicle (UAV) platforms.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из сборника (выпуск продолж. издания)
Шифр издания :
Автор(ы) : Muzalevskiy K. V., Mikhaylov M. I., Ruzicka Z.
Заглавие : Calibration of UWB UAV radar for the remote measurement of reflection coefficient
Коллективы : IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology
Место публикации : IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). - 2023. - P.105-108. - , DOI 10.1109/USBEREIT58508.2023.10158870
Примечания : Cited References: 16. - The investigation supported by the Russian Science Foundation and the Krasnoyarsk Regional Science Foundation, project № 22-17-20042
Аннотация: In this work, the possibility of the remote measurement of reflection coefficient in the ultra-wide frequency range from 425 MHz to 1010 MHz from the board of unmanned aerial vehicle (UAV) using ultra-wide band (UWB) radar was investigated. With this in mind, the antenna-feeder path of UAV UWB radar is calibrated. The calibration process consisted in measuring the reflection coefficient from the brass mesh sheet at various UAV hovering heights. Printed log-periodic dipole antenna was used as transmitter-receiver antenna. As a result, the antenna return loss in an empty-room and the complex antenna response function of the antenna-feeder path of the UAV UWB radar were found. It is shown that the amplitude of the reflected wave from a brass mesh sheet can be measured with root-mean square error (RMSE), RMSE=0.017 1/m and a determination coefficient (R 2 ) of R 2 = 0.967. Therewith the UAV hovering heights measured by the pulse method and the on-board laser rangefinder correlates with each other with R2=0.999 and with RMSE=3.5cm (distance measurement error of the laser rangefinder is ±1cm, surface irregularities of the brass mesh sheet were no more than 1.5cm). Measured in the frequency range from 500 MHz to 900 MHz, the reflection coefficient from fresh lake water by UAV UWB radar with a relative error of no more than 7.5% (practically does not depend on the height of the UAV hovering, approximately from 2.2 m to 5.2 m) coincides with the calculated one by the Stogryn's formulas.
Смотреть статью,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из сборника (однотомник)
Шифр издания :
Автор(ы) : Mironov V. L., Grugoriev M. N., Zakharov3 A. I., Chymitdorzhiev T. N., Bykov M. E., Shibaev S. V.
Заглавие : Cryogenesis investigation at the Tiksi by radar interferometry ALOS PALSAR
Коллективы : "Permafrost Engineering", International Symposium, Институт мерзлотоведения им. П.И. Мельникова СО РАН
Место публикации : Permafrost Engineering: proc. of the IX Int. Symp., 3-7 Sept. 2011, Mirny,Russia/ ed. R. V. Zhang. - 2011. - P.482. - ISBN 978-5-93254-102-9
Читать в сети ИФ
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zakharov A. I., Epov M. I., Mironov V. L., Chymitdorzhiev T. N., Seleznev V. S., Emanov A. F., Bykov M. E., Cherepenin V. A.
Заглавие : Earth surface subsidence in the kuznetsk coal basin caused by manmade and natural seismic activity according to ALOS PALSAR interferometry
Место публикации : IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.: IEEE-Institute Electrical and Electronics Engineers, 2013. - Vol. 6, Is. 3. - P.1578-1583. - ISSN 1939-1404, DOI 10.1109/JSTARS.2013.2259220
Примечания : Cited References: 14
Предметные рубрики: RADAR INTERFEROMETRY
DEFORMATION
DINSAR
INSAR
Ключевые слова (''Своб.индексиров.''): coal mine--land surface subsidence--seismic measurements--spaceborne radar interferometry
Аннотация: This paper presents results of a spaceborne radar interferometry technique application for land subsidence observations in a coal mining area in Kuzbass, Russia. Joint analysis of radar interferometry measurements with simultaneous seismic observations shows that the land subsidence is triggered by seismic events, both natural and caused by human underground activity. Surface displacements are linked typically to the boundaries of block structures and correlate with the location of clusters of seismic events.
Смотреть статью,
WoS,
WOS,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zeyliger A. M., Muzalevskiy K. V., Zinchenko E. V., Ermolaeva O. S.
Заглавие : Field test of the surface soil moisture mapping using Sentinel-1 radar data
Место публикации : Sci. Total Environ. - 2022. - Vol. 807, Part 2. - Ст.151121. - ISSN 00489697 (ISSN), DOI 10.1016/j.scitotenv.2021.151121
Примечания : Cited References: 43. - The research was performed within the framework of the Russian Foundation for Basic Research project 19-29-05261 mk “Cartographic modelling of soil moisture reserves based on complex geophysical water content measurements for digital irrigated agriculture”
Аннотация: Soil surface moisture is one of the key parameters for describing the hydrological state and assessing the potential availability of water for irrigated plants. Because the radar backscattering coefficient is sensitive to soil moisture, the application of Sentinel-1 data may support soil surface moisture mapping at high spatial resolution by detecting spatial and temporal changes at the field scale for precision irrigation management. This mapping is required to control soil water erosion and preferential water flow to improve irrigation water efficiency and minimise negative impacts on surface and ground water bodies. Direct observations of soil surface moisture (5-cm thickness) were performed at an experimental plot in the study site of the All-Russian Scientific Research Institute of Irrigated Agriculture, near the village Vodnyy, Volgograd region. Soil surface moisture retrieval from Sentinel-1 was performed at the same location. A second set of soil surface moisture was calculated for the soil sampling sites using the permittivity model, based on the estimates of soil surface characteristics: a) reflectivity, obtained by the neural network method from Sentinel-1 observations; b) roughness, obtained from the geodata of the stereoscopic survey with unmanned aerial vehicle Phantom 4 Pro. The raster set of soil surface moisture geodata was obtained based on the reflectivity geodata raster set to solve the inverse problem using a permittivity model that considers the soil texture of the experimental plot. The determination coefficient (0.948) and standard deviation (2.04%) were obtained by comparing both sets of soil moisture point geodata taken from the same soil sampling sites. The values confirmed a satisfactory linear correlation between the directly measured and indirectly modelled sets. A comparison of the two sets of geodata indicated a satisfactory reproduction of the first set by the second set. As a result, the developed method can be considered as the scientific and methodological basis of the new technology of soil surface moisture monitoring by radar, which is one of the basic characteristics used in precision irrigation management.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
8.

Вид документа : Статья из сборника (однотомник)
Шифр издания :
Автор(ы) : Mironov V. L., Muzalevskiy K. V., Anna S.
Заглавие : Measuring soil temperature and moisture of arctic tundra based on SMOS and ALOS PALSAR data
Коллективы : International Siberian Conference on Control and Communications
Место публикации : Int. Sib. Conf. on Control and Communicat.: Proceedings: IEEE-Institute Electrical and Electronics Engineers, 2015. - ISBN 978-1-4799-7102-2, DOI 10.1109/SIBCON.2015.7147154
Ключевые слова (''Своб.индексиров.''): alos palsar--artic tundra--permafrost--smos--soil moisture--soil temperature--backscattering--balloons--landforms--luminance--mean square error--moisture--permafrost--permittivity--radar--radar measurement--soil moisture--soils--temperature--weather information services--alos palsar--artic tundra--backscatter coefficients--brightness temperatures--determination coefficients--root mean square errors--smos--soil temperature--soil surveys
Аннотация: In this paper, methods for retrieving soil moisture, roughness, and temperature based on the radar backscatter coefficient (ALOS PALSAR) and brightness temperature (SMOS) data related to a tundra area on the Yamal peninsula were tested. As theoretical models, there were used the semi-empirical backscatter model proposed by Y. Oh et. al and the L-band Microwave Emission of the Biosphere (L-MEB) model proposed by J-P Wigneron et.al. An integral part of these models is a permittivity model of moist soil both thawed and frozen, which links backscatter coefficient and brightness temperature with moisture, temperature, and dry density of the soil as well as the wave frequencies used by the ALOS PALSAR and SMOS. The applied permittivity model was developed based on dielectric measurements conducted for the organic rich soil samples collected at the Vaskiny Dachi weather station located in the area of the radar backscatter and brightness observations. The retrieved temperatures were correlated with the ones measured at the weather station yielding the values of root-mean-square error and determination coefficient of 3.8°C and 0.80, respectively. © 2015 IEEE.
Scopus
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Mironov V.L.
Заглавие : Microwave Dielectric Spectroscopy of Moist Soils in the Problem of Radar and Radiometric Remote Sensing of the Land
Коллективы : Progress In Electromagnetics Research Symposium
Место публикации : PIERS Online. - 2008. - Vol. 4, No. 1. - P.411-415
Материалы конференции
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Muzalevskiy K. V.
Заглавие : Retrieving soil moisture profiles based on multifrequency polarimetric radar backscattering observations. Theoretical case study
Место публикации : Int. J. Remote Sens. - 2021. - Vol. 42, Is. 2. - P.506-519. - ISSN 01431161 (ISSN), DOI 10.1080/01431161.2020.1809743
Примечания : Cited References: 46. - This work was supported by the Russian Foundation for Basic Research (grant No. 18-05-00405) in part of the sensing depth investigation and retrieving soil moisture in the L-band, a technique for measuring moisture profiles at two frequencies of 435 MHz and 5.4 GHz was created in part of SB RAS project No. 0356-2019-0004
Аннотация: In this theoretical work, a dual-frequency polarimetric method is proposed for measuring moisture profiles in the topsoil up to 0.30 m thick. A case of measuring soil moisture profiles, which monotonically changes with depth, during 37 days after irrigation is considered. Original values of backscattering coefficients are calculated by the Oh model and by the small perturbation method at frequencies of 5.4 GHz and 435 MHz, respectively. In these calculations, we used measured moisture profiles and spectroscopic refractive mixing dielectric model of non-saline mineral soil with a clay fraction of 9.1%. Soil moisture profiles are retrieved by solving the inverse problem, the cost function of which is constructed based on the co- and cross-polarized ratios, calculated at two frequencies for the measured and modelled soil moisture profiles. An exponential function is used as a modelled soil moisture profile. It is shown that the standard deviation between the retrieved and measured soil moisture values in the surface layer 0.30 m thick appears to be ≤0.02 m3 m−3 (theoretical limit), and the determination coefficient is 0.881. The study shows a promising path towards developing multi-frequency radar systems for remote sensing of soil moisture profiles using satellites-based and unmanned aerial vehicles air-based platforms.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
 1-10    11-21   21-21 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)