Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>S=DIMENSIONS<.>)
Общее количество найденных документов : 4
Показаны документы с 1 по 4
1.


    Kagan, M. Y.
    Manifestation of the upper Hubbard band in the 2D Hubbard model at low electron density / M. Y. Kagan, V. V. Val'kov, P. . Woelfle // Low Temp. Phys. - 2011. - Vol. 37, Is. 9-10. - P. 834-839 ; Физика низких температур, DOI 10.1063/1.3670026. - Cited References: 31. - This work was supported by RFBR Grants No. 11-0200798 and 11-02-00741. . - ISSN 1063-777X
РУБ Physics, Applied
Рубрики:
2-DIMENSIONAL FERMI GAS
   LIQUID BEHAVIOR

   SPECTRAL FUNCTIONS

   TRANSITION METALS

   SUPERCONDUCTIVITY

   FERROMAGNETISM

   DIMENSIONS

   SCATTERING

   STATE

Кл.слова (ненормированные):
electron density -- electronic density of states -- Fermi liquid -- Green's function methods -- Hubbard model
Аннотация: We consider the 2D Hubbard model in the strong-coupling case (U > > W) and at low electron density (nd(2) ≪1). We find an antibound state as a pole in the two-particle T-matrix. The contribution of this pole in the self-energy reproduces a two-pole structure in the dressed one-particle Green-function similar to the Hubbard-I approximation. We also discuss briefly the Engelbrecht-Randeria mode which corresponds to the pairing of two holes below the bottom of the band for U >> W and low electron density. Both poles produce nontrivial corrections to Landau Fermi-liquid picture already at low electron density but do not destroy it in 2D.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Kagan, M. Yu.] PL Kapitza Inst Phys Problem, Moscow 119334, Russia
[Val'kov, V. V.] LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
[Woelfle, P.] Karlsruhe Inst Technol, Inst Theoret Condensed Matter Phys, D-76131 Karlsruhe, Germany
ИФ СО РАН
P.L. Kapitza Institute for Physical Problem, 2 ul. Kosygina, Moscow 119334, Russian Federation
Kirensky Institute of Physics, Akademgorodok, 50, bld. 38, Krasnoyarsk 660036, Russian Federation
Institute for Theoretical Condensed Matter physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, Karlsruhe D-76131, Germany

Доп.точки доступа:
Val'kov, V. V.; Вальков, Валерий Владимирович; Woelfle, P.

}
Найти похожие
2.


    Zobov, V. E.
    THE critical exponent of the tree lattice generating function in the eden model / V. . Zobov // Theor. Math. Phys. - 2010. - Vol. 165, Is. 2. - P. 1443-1455, DOI 10.1007/s11232-010-0120-5. - Cited References: 14 . - ISSN 0040-5779
РУБ Physics, Multidisciplinary + Physics, Mathematical
Рубрики:
GROWTH PARAMETER
   CLUSTERS

   DIMENSIONS

   SYSTEMS

Кл.слова (ненормированные):
number of lattice trees -- tree perimeter -- generating function -- critical exponent -- hypercubic lattice -- Bethe lattice -- Eden model -- Bethe lattice -- critical exponent -- Eden model -- generating function -- hypercubic lattice -- number of lattice trees -- tree perimeter
Аннотация: We consider the increase in the number of trees as their size increases in the Eden growth model on simple and face-centered hypercubic lattices in different space dimensions. We propose a first-order partial differential equation for the tree generating function, which allows relating the exponent at the critical point of this function to the perimeter of the most probable tree. We estimate tree perimeters for the lattices considered. The theoretical values of the exponents agree well with the values previously obtained by computer modeling. We thus explain the closeness of the dimension dependences of the exponents of the simple and face-centered lattices and their difference from the results in the Bethe lattice approximation.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Zobov, V. E.] Kirensky Inst Phys, Siberian Branch, RAS, Krasnoyarsk, Russia
RAS, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk, Russia
ИФ СО РАН
Kirensky Institute of Physics, Siberian Branch, RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Зобов, Владимир Евгеньевич
}
Найти похожие
3.


    Korshunov, M. M.
    Doping-dependent evolution of low-energy excitations and quantum phase transitions within an effective model for high-T-c copper oxides / M. M. Korshunov, S. G. Ovchinnikov // Eur. Phys. J. B. - 2007. - Vol. 57, Is. 3. - P. 271-278, DOI 10.1140/epjb/e2007-00179-2. - Cited References: 49 . - ISSN 1434-6028
РУБ Physics, Condensed Matter
Рубрики:
ELECTRON CORRELATIONS
   HUBBARD-MODEL

   RANGE-ORDER

   DIMENSIONS

   WAVE

   FERMIONS

   SYSTEMS

   BANDS

   METAL

Кл.слова (ненормированные):
Doping dependent evolution -- Kinematic correlation functions -- Low energy excitations -- Quantum phase transitions -- Doping (additives) -- Electric excitation -- Mean field theory -- Parameter estimation -- Phase transitions -- Quantum theory -- Copper oxides
Аннотация: In this paper a mean-field theory for the spin-liquid paramagnetic non-superconducting phase of the p- and n-type high-T-c cuprates is developed. This theory applied to the effective t-t'-t ''-J* model with the ab initio calculated parameters and with the three-site correlated hoppings. The static spin-spin and kinematic correlation functions beyond Hubbard-I approximation are calculated self-consistently. The evolution of the Fermi surface and band dispersion is obtained for the wide range of doping concentrations x. For p-type systems the three different types of behavior are found and the transitions between these types are accompanied by the changes in the Fermi surface topology. Thus a quantum phase transitions take place at x = 0.15 and at x = 0.23.Due to the different Fermi surface topology we found for n-type cuprates only one quantum critical concentration, x = 0.2. The calculated doping dependence of the nodal Fermi velocity and the effective mass are in good agreement with the experimental data.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
ИФ СО РАН
L.V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036 Krasnoyarsk, Russian Federation
Max-Planck-Institut fur Physik Komplexer Systeme, 01187 Dresden, Germany

Доп.точки доступа:
Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Коршунов, Максим Михайлович
}
Найти похожие
4.


   
    Itinerant in-plane magnetic fluctuations and many-body correlations in NaxCoO2 / M. M. Korshunov [et al.] // Phys. Rev. B. - 2007. - Vol. 75, Is. 9. - Ст. 94511, DOI 10.1103/PhysRevB.75.094511. - Cited References: 47 . - ISSN 1098-0121
РУБ Physics, Condensed Matter
Рубрики:
TRANSITION-METALS
   WAVE-FUNCTIONS

   HUBBARD-MODEL

   FERMI-SURFACE

   ENERGY-BANDS

   FERROMAGNETISM

   APPROXIMATION

   DIMENSIONS

   SYSTEMS

   FIELD

Аннотация: Based on the ab initio band structure for NaxCoO2, we derive the single-electron energies and the effective tight-binding description for the t(2g) bands using projection procedure. Due to the presence of the next-nearest-neighbor hoppings, a local minimum in the electronic dispersion close to the Gamma point of the first Brillouin zone forms. Correspondingly, in addition to a large Fermi surface, an electron pocket close to the Gamma point emerges at high doping concentrations. The latter yields a scattering channel, resulting in a peak structure of the itinerant magnetic susceptibility at small momenta. This indicates dominant itinerant in-plane ferromagnetic fluctuations above a certain critical concentration x(m), in agreement with neutron scattering data. Below x(m), the magnetic susceptibility shows a tendency toward the antiferromagnetic fluctuations. We further analyze the many-body effects on the electronic and magnetic excitations using various approximations applicable for different U/t ratios.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
Tech Univ Braunschweig, Inst Math & Theoret Phys, D-38106 Braunschweig, Germany
Russian Acad Sci, Ural Div, Inst Met Phys, Yetaterinburg 620041, Russia
ИФ СО РАН
L. V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036 Krasnoyarsk, Russian Federation
Max-Planck-Institut fur Physik Komplexer Systeme, D-01187 Dresden, Germany
Institute fur Mathematische und Theoretische Physik, TU Braunschweig, 38106 Braunschweig, Germany
Institute of Metal Physics, Russian Academy of Sciences, Ural Division, 620041 Yekaterinburg GSP-170, Russian Federation

Доп.точки доступа:
Korshunov, M. M.; Коршунов, Максим Михайлович; Eremin, I.; Shorikov, A.; Anisimov, V. I.; Renner, M.; Brenig, W.
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)