Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Пилипчук, Артем Сергеевич$<.>)
Общее количество найденных документов : 25
Показаны документы с 1 по 10
 1-10    11-20   21-25 
1.


    Пилипчук, Артем Сергеевич.
    Связанные состояния в континууме в интегрируемых и неинтегрируемых волноводных структурах : автореф. дис. на соиск. уч. степени канд. физ.-мат. наук : 01.04.07 / А. С. Пилипчук ; науч. рук. А. Ф. Садреев ; офиц. опп.: А. М. Сатанин, А. А. Богданов ; Сиб. федер. ун-т, Ин-т физики им. Л.В. Киренского. - Красноярск, 2018. - 22 с. - Библиогр.

Смотреть автореферат,
Читать в сети ИФ
Держатели документа:
Библиотека Института физики им. Л. В. Киренского СО РАН

Доп.точки доступа:
Садреев, Алмаз Фаттахович \науч. рук.\; Sadreev, A. F.; Сатанин, Аркадий Михайлович \офиц. опп.\; Богданов, Андрей Андреевич \офиц. опп.\; Pilipchuk, A. C.; Сибирский федеральный университет; Институт физики им. Л.В. Киренского Сибирского отделения РАН; Институт радиотехники и электроники им. В.А. Котельникова РАН
Свободных экз. нет}
Найти похожие
2.


    Bulgakov, E. N.
    Bound states in the continuum in dielectric resonators embedded into metallic waveguide / E. N. Bulgakov, A. S. Pilipchuk, A. F. Sadreev // All-dielectric nanophotonics / ed.: A. S. Shalin [et al.] : Elsevier, 2023. - Chapt. 7. - P. 185-212. - (Nanophotonics series). - Cited References: 97. - РНФ № 22-12-00070

Смотреть книгу,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC, SB RAS

Доп.точки доступа:
Shalin, A. S. \ed.\; Valero, Adrià Canós \ed.\; Miroshnichenko, A. \ed.\; Pilipchuk, A. S.; Пилипчук, Артем Сергеевич; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Булгаков, Евгений Николаевич
}
Найти похожие
3.
   В37
   П 32


    Пилипчук, Артем Сергеевич.
    Связанные состояния в континууме в интегрируемых и неинтегрируемых волноводных структурах [Рукопись] : дис. на соиск. уч. степени канд. физ.-мат. наук : 01.04.07 / А. С. Пилипчук ; науч. рук. А. Ф. Садреев ; Сиб. федер. ун-т, Ин-т физики им. Л.В. Киренского. - Красноярск, 2018. - 103 с. - Библиогр.: 77 назв. -
ГРНТИ
ББК В374я031 + В345.16я031


Смотреть диссертацию,
Читать в сети ИФ
Держатели документа:
Библиотека Института физики им. Л. В. Киренского СО РАН
Доп.точки доступа:
Садреев, Алмаз Фаттахович \науч. рук.\; Sadreev, A. F.; Pilipchuk, A. C.; Сибирский федеральный университет; Институт физики им. Л.В. Киренского Сибирского отделения РАН
Экземпляры всего: 1
ДС (1)
Свободны: ДС (1)}
Найти похожие
4.


    Pilipchuk, A. S.
    Bound states in the continuum in open spherical resonator / A. S. Pilipchuk, A. A. Pilipchuk, A. F. Sadreev // Phys. Scr. - 2020. - Vol. 95, Is. 8. - Ст. 085002, DOI 10.1088/1402-4896/ab99fb. - Cited References: 33 . - ISSN 0031-8949
Кл.слова (ненормированные):
Bound states in the continuum -- effective non-Hermitian Hamiltonian -- acoustic resonator -- trapped modes
Аннотация: We consider the bound states in the continuum (BICs) or embedded trapped modes in an open spherical acoustic resonator. The eigenfrequencies of closed resonator are 2l+1-fold degenerated, where l is the orbital index. An attachment of two cylindrical waveguides lifts this degeneracy and transforms the eigenfrequencies into resonances whose real parts depend on the position of the waveguides. When the waveguides are angled by θ ≠ π, variation over that angle gives rise to avoided crossings of resonant modes with different l to result in the Friedrich-Wintgen BICs. For θ = π there might be only the symmetry protected BICs. When three waveguides are connected to the spherical resonator the Friedrich-Wintgen BICs occur due to the avoided crossings of resonant modes with the same l but different azimuthal indices -l ≤ m ≤ l.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Pilipchuk, A. A.; Пилипчук, Алина Андреевна; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Пилипчук, Артем Сергеевич
}
Найти похожие
5.


    Пилипчук, Артем Сергеевич.
    Возбуждение акустических полей с орбитальным угловым моментом в цилиндрических резонаторах с некоаксиально подсоединенными волноводами / А. С. Пилипчук, А. А. Пилипчук // Сборник трудов XVII Всероссийской школы-семинара «Физика и применение микроволн» имени профессора А.П. Сухорукова (Волны-2019). - 2019. - Секция: Акустика и акустооптика. - С. 84-85. - Библиогр.: 6. - Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №18-32-00234 . - ISBN 978-5-600-02483-0

Материалы конференции,
Читать в локальной сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Пилипчук, Алина Андреевна; Pilipchuk, A. C.; Московский государственный университет им. М.В. Ломоносова; Российский фонд фундаментальных исследований"Физика и применение микроволн", Всероссийская школа-семинар имени А.П. Сухорукова(17 ; 2019 ; май ; 26-31 ; Можайск, Моск. обл.); Волны-2019. Всероссийская школа-семинар "Физика и применение микроволн" имени А.П. Сухорукова(17 ; 2019; май ; 26-31 ; Можайск, Московская обл.)
}
Найти похожие
6.


   
    Использование акустической теории связанных мод в задачах о волновом транспорте и поиске связанных состояний в континууме / А. С. Пилипчук [и др.] // XX Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества (СПФКС–20) : тезисы докладов : программа. - Екатеринбург, 2019. - Секция: Теоретическая. - С. 17. - Библиогр.: 3. - Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №18-32-00234

,
Материалы конференции
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Пилипчук, Артем Сергеевич; Pilipchuk, A. C.; Пилипчук, Алина Андреевна; Садреев, Алмаз Фаттахович; Sadreev, A. F.; Максимов, Дмитрий Николаевич; Maksimov, D. N.; Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества(20 ; 2019 ; нояб. ; 21-28 ; Екатеринбург); Уральское отделение РАН; Институт физики металлов Уральского отделения РАН; Институт теплофизики УрО РАН; Институт электрофизики УрО РАН
}
Найти похожие
7.


    Пилипчук, Алина Андреевна.
    Сваязанные состояния в континууме в открытом акустическом сферическом резонаторе с несимметрично присоединенными волноводами / А. А. Пилипчук, А. С. Пилипчук, А. Ф. Садреев // XX Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества (СПФКС–20) : тезисы докладов : программа. - Екатеринбург, 2019. - Секция: Теоретическая. - С. 17. - Библиогр.: 2. - Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №18-32-00234

,
Материалы конференции,
Читать в сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Пилипчук, Артем Сергеевич; Pilipchuk, A. C.; Садреев, Алмаз Фаттахович; Sadreev, A. F.; Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества(20 ; 2019 ; нояб. ; 21-28 ; Екатеринбург); Уральское отделение РАН; Институт физики металлов Уральского отделения РАН; Институт теплофизики УрО РАНИнститут электрофизики УрО РАН
}
Найти похожие
8.


   
    General framework of bound states in the continuum in an open acoustic resonator / L. Huang, B. Jia, A. S. Pilipchuk [et al.] // Phys. Rev. Appl. - 2022. - Vol. 18, Is. 5. - Ст. 054021, DOI 10.1103/PhysRevApplied.18.054021. - Cited References: 47. - L.H. and A.E.M. are supported by the Australian Research Council Discovery Project (Grant No. DP200101353) and the UNSW Scientia Fellowship program. Y.K.C. and D.A.P. are supported by the Australian Research Council Discovery Project (Grant No. DP200101708). B.J., S.H., and Y.L. are supported by the National Natural Science Foundation of China (Grant No. 12074286) and the Shanghai Science and Technology Committee (Grant No. 21JC1405600). A.P., E.B., and A.S. are supported by the Russian Science Foundation (Grant No. 22-12-00070) . - ISSN 2331-7019
Кл.слова (ненормированные):
Acoustic resonators -- Acoustic waveguides -- Bound-states -- Coupled waveguide resonators -- Degenerate modes -- Eigen modes -- General method -- High-Q resonances -- Momentum spaces -- Non-Hermitian Hamiltonians -- Waveguide-resonators -- Waveguide filters
Аннотация: Bound states in the continuum (BICs) provide a viable way of achieving high-Q resonances in both photonics and acoustics. In this work, we propose a general method of constructing Friedrich-Wintgen (FW) BICs and accidental BICs in a coupled acoustic waveguide-resonator system. We demonstrate that FW BICs can be achieved with arbitrary two degenerate resonances in a closed resonator, regardless of whether they have the same or opposite parity. Moreover, their eigenmode profiles can be arbitrarily engineered by adjusting the position of the attached waveguide. This suggests an effective way of continuously switching the nature of the BICs from FW BICs to symmetry-protected BICs or accidental BICs. Also, such BICs are sustained in the coupled waveguide-resonator system with shapes such as rectangles, ellipses, and rhomboids. These interesting phenomena are well explained by the two-level effective non-Hermitian Hamiltonian, where two strongly coupled degenerate modes play a major role in forming such FW BICs. Additionally, we find that such an open system also supports accidental BICs in geometry space instead of momentum space via tuning the position of the attached waveguide, which is attributed to the quenched coupling between the waveguide and eigenmodes of the closed cavity. Finally, we fabricate a series of three-dimensional coupled resonator waveguides and experimentally verify the existence of FW BICs and accidental BICs by measuring the transmission spectra. Our results complement the current BIC library in acoustics and provide nice routes for designing acoustic devices, such as acoustic absorbers, filters, and sensors.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
School of Engineering and Information Technology, University of New South Wales, Northcott Drive, Canberra, ACT 2600, Australia
Institute of Acoustics, Tongji University, Shanghai, 200092, China
L. V. Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, RAN, Krasnoyarsk, 660036, Russian Federation
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States
Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, United States

Доп.точки доступа:
Huang, L.; Jia, B.; Pilipchuk, A. S.; Пилипчук, Артем Сергеевич; Chiang, Y.; Huang, S.; Li, J.; Shen, C.; Bulgakov, E. N.; Булгаков, Евгений Николаевич; Deng, F.; Powell, D. A.; Cummer, S. A.; Li, Y.; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Miroshnichenko, A. E.
}
Найти похожие
9.


   
    Bound states in the continuum protected by reduced symmetry of three-dimensional open acoustic resonators / B. Jia, L. Huang, A. S. Pilipchuk [et al.] // Phys. Rev. Appl. - 2023. - Vol. 19, Is. 5. - Ст. 054001, DOI 10.1103/PhysRevApplied.19.054001. - Cited References: 30. - L. Huang and A.E. Miroshnichenko were supported by the Australian Research Council Discovery Project (DP200101353) and the UNSW Scientia Fellowship program. B. Jia, S. Huang, and Y. Li are supported by the National Natural Science Foundation of China (Grant No. 12074286), and Shanghai Science and Technology Committee under Grant No. 21JC1405600 . - ISSN 2331-7019
Аннотация: Bound states in the continuum (BICs) have been demonstrated as a powerful tool for trapping acoustic fields in an acoustic resonator. It has been widely recognized that symmetry-protected (SP) BICs result from symmetry incompatibility of some eigenmodes of a resonator with propagating modes of waveguides. The most typical example of SP BIC is the odd eigenmode of the resonator with the eigenfrequency embedded into the propagating band of even propagating eigenmodes of the waveguide. In this work, we consider a more sophisticated case of an acoustic cuboid resonator that is opened by the attachment of two cylindrical waveguides. We show that BICs can be sustained in an open acoustic resonator with reduced symmetry. For symmetrical positions of waveguides, the eigenmodes of the cuboid can also be classified as SP BICs and show different stability against the shifts of waveguides from the positions of symmetry of the cuboid. We fabricate a series of coupled waveguide resonators and experimentally verify the existence of these BICs by identifying the vanished linewidth of Fano resonance in transmission spectra. Besides, we also show that evanescent modes of waveguides play a role in the formation of BICs in a nonaxisymmetric waveguide-resonator system by tuning the angle θ between two waveguides. Consequently, the eigenmodes remain SP BICs for θ = 0° and θ = 180° but convert into accidental BICs at θ ≈ 85° or θ ≈ 275°. Such accidental BICs are also experimentally verified. Our results enrich the understanding of SP BICs and accidental BICs, and provide alternative methods of routing acoustic waves and designing acoustic devices requiring fine spectrum features, such as filters and sensors.

Смотреть статью,
Читать в сети ИФ
Держатели документа:
Institute of Acoustics, Tongji University, Shanghai, 200092, People's Republic of China
School of Physics and Electronic Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
School of Engineering and Information Technology, University of New South Wales, Canberra, Northcott Drive, Australian Capital Territory, 2600, Australia
L. V. Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, RAN, Krasnoyarsk 660036, Russia
Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey, 08028, USA

Доп.точки доступа:
Jia, Bin; Huang, Lujun; Pilipchuk, A. S.; Пилипчук, Артем Сергеевич; Huang, Sibo; Shen, Chen; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Li, Yong; Miroshnichenko, Andrey E.
}
Найти похожие
10.


   
    Acoustic resonances in non-Hermitian open systems / L. Huang, S. Huang, Ch. Shen [et al.] // Nat. Rev. Phys. - 2024. - Vol. 6, Is. 1. - P. 11-27, DOI 10.1038/s42254-023-00659-z. - Cited References: 288. - L.H. and A.E.M. were supported by the Australian Research Council Discovery Project (DP200101353) and the UNSW Scientia Fellowship programme. S.H. and Y.L. were supported by the Shanghai Science and Technology Committee (grant nos. 21JC1405600). C.S. was supported by the US National Science Foundation under grant no. CMMI-2137749. S.Y., X.N., S.K. and A.A. were supported by the Air Force Office of Scientific Research and Simons Foundation. A.S.P and A.F.S acknowledge the state assignment of Kirensky Institute of Physics. Y.K.C. and D.A.P. were supported by the Australian Research Council Discovery Project (grant no. DP200101708) . - ISSN 2522-5820
Аннотация: Acoustic resonances in open systems, which are usually associated with resonant modes characterized by complex eigenfrequencies, play a fundamental role in manipulating acoustic wave radiation and propagation. Notably, they are accompanied by considerable field enhancement, boosting interactions between waves and matter, and leading to various exciting applications. In the past two decades, acoustic metamaterials have enabled a high degree of control over tailoring acoustic resonances over a range of frequencies. Here, we provide an overview of recent advances in the area of acoustic resonances in non-Hermitian open systems, including Helmholtz resonators, metamaterials and metasurfaces, and discuss their applications in various acoustic devices, including sound absorbers, acoustic sources, vortex beam generation and imaging. We also discuss bound states in the continuum and their applications in boosting acoustic wave–matter interactions, active phononics and non-Hermitian acoustic resonances, including phononic topological insulators and the acoustic skin effect.

Смотреть статью,
Scopus
Держатели документа:
The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai, China
Institute of Acoustics, Tongji University, Shanghai, China
Department of Mechanical Engineering, Rowan University, Glassboro, NJ, USA
Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
L. V. Kirensky Institute of Physics, Krasnoyarsk, Russia
School of Engineering and Technology, University of New South Wales, Canberra, Australian Capital Territory, Australia
Physics Program, Graduate Center, City University of New York, New York, NY, USA

Доп.точки доступа:
Huang, Lujun; Huang, Sibo; Shen, Chen; Yves, Simon; Pilipchuk, A. S.; Пилипчук, Артем Сергеевич; Ni, Xiang; Kim, Seunghwi; Chiang, Yan Kei; Powell, David A.; Zhu, Jie; Cheng, Ya; Li, Yong; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Alu, Andrea; Miroshnichenko, Andrey E.
}
Найти похожие
 1-10    11-20   21-25 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)