Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (2)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Ershov, A. E.$<.>)
Общее количество найденных документов : 75
Показаны документы с 1 по 20
1.


   
    Infrared bound states in the continuum: random forest method / M. S. Molokeev, A. S. Kostyukov, A. E. Ershov [et al.] // Opt. Lett. - 2023. - Vol. 48, Is. 17. - P. 4460-4463, DOI 10.1364/OL.494629. - Cited References: 42. - Ministry of Science and Higher Education of the Russian Federation (FSRZ-2023-0006) . - ISSN 0146-9592. - ISSN 1539-4794
   Перевод заглавия: Инфракрасные связанные состояния в континууме: метод случайного леса
Кл.слова (ненормированные):
Field enhancement -- Infrared radiation -- Neural networks -- Refractive index -- Second harmonic generation -- Subwavelength gratings
Аннотация: In this Letter, we consider optical bound states in the continuum (BICs) in the infrared range supported by an all-dielectric metasurface in the form of subwavelength dielectric grating. We apply the random forest machine learning method to predict the frequency of the BICs as dependent on the optical and geometric parameters of the metasurface. It is found that the machine learning approach outperforms the standard least square method at the size of the dataset of ≈4000 specimens. It is shown that the random forest approach can be applied for predicting the subband in the infrared spectrum into which the BIC falls. The important feature parameters that affect the BIC wavelength are identified.

Смотреть статью,
Читать в сети ИФ
Держатели документа:
IRC SQC, Siberian Federal University, Krasnoyarsk, 660041, Russia
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
Laboratory of Theory and Optimization of Chemical and Technological Processes, University of Tyumen, Tyumen, 625003, Russia
Institute of Computational Modelling SB RAS, Krasnoyarsk, 660036, Russia

Доп.точки доступа:
Molokeev, M. S.; Молокеев, Максим Сергеевич; Kostyukov, A. S.; Ershov, A. E.; Maksimov, D. N.; Максимов, Дмитрий Николаевич; Gerasimov, V. S.; Polyutov, S. P.
}
Найти похожие
2.


    Bulgakov, E. N.
    Optical coupled-mode theory for dielectric solids of revolution / E. N. Bulgakov, D. N. Maksimov, A. E. Ershov // Phys. Rev. A. - 2023. - Vol. 107, Is. 4. - Ст. 043506, DOI 10.1103/PhysRevA.107.043506. - Cited References: 33. - This work received financial support through Russian Science Foundation Grant No. 22-72-00102 . - ISSN 2469-9926. - ISSN 2469-9934
Аннотация: We propose a single resonance coupled-mode approach to light scattering by dielectric solids of revolution. By using a biorthogonal decomposition of the S matrix found with the extended boundary condition method we derived all parameters required for application of the temporal coupled-mode theory in a closed form. The proposed approach allows for constructing a frequency-dependent Fano response due to a single resonance after the full-wave solution has been found at a single incident frequency.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk 660036, Russia
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
IRC SQC, Siberian Federal University, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Maksimov, D. N.; Максимов, Дмитрий Николаевич; Ershov, A. E.; Булгаков, Евгений Николаевич
}
Найти похожие
3.


   
    Size-selective optical trapping of nanoparticles with bound states in the continuum / A. S. Kostyukov, V. S. Gerasimov, A. E. Ershov [et al.] // Opt. Lasers Eng. - 2023. - Vol. 171. - Ст. 107797, DOI 10.1016/j.optlaseng.2023.107797. - Cited References: 46. - The work was supported by Russian Science Foundation Grant No. 22-12-00070 . - ISSN 0143-8166. - ISSN 1873-0302
Кл.слова (ненормированные):
Nanoparticles -- Bound states in the continuum -- Optical tweezers -- Optical trapping
Аннотация: We consider a waveguide with a symmetrically integrated silicon cylinder. This design supports a symmetry protected bound state in the continuum (BIC) with Q-factor controlled by slight displacement of the cylinder. When excited by a TE10 electromagnetic wave, the BIC leads to giant optical forces near the cylinder. These forces have a strong impact on nanoparticles being dragged by liquid flow over the waveguide as they approach the cylinder. At the same time, the nanoparticles perturb the resonant frequency of the BIC with a value proportional to their volume and proximity to the cylinder. Therefore, the interplay between the resonant width of the BIC and the nanoparticle frequency perturbation determines the positions of the nanoparticles trapped around the cylinder. This paradigm demonstrates resonant self-trapping and sorting of nanoparticles by size through BIC excitation. We highlight the extreme sensitivity of these effects to the frequency of the injected TE wave. Additionally, we show that these results remain valid when considering the finite conductivity of metal waveguides.

Смотреть статью,
Scopus,
WOS
Держатели документа:
International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modelling, SB RAS, Krasnoyarsk, 660036, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kostyukov, A. S.; Gerasimov, V. S.; Ershov, A. E.; Bulgakov, E. N.; Булгаков, Евгений Николаевич; Sadreev, A. F.; Садреев, Алмаз Фаттахович
}
Найти похожие
4.
Гос. рег. прогр. для ЭВМ 2023681182 Российская Федерация

   
    Программа расчёта трансмиссионных свойств плазмонного нановолновода / А. Е. Ершов, B. C. Герасимов, Н. Ю. Игнатова, С. В. Карпов. - № 2023681182 ; Заявл. 02.10.2022 ; Опубл. 11.10.2022 // Программы для ЭВМ. Базы данных. Топологии интегральных микросхем : офиц. бюл. Фед. службы по интеллектуал. собственности (Роспатент). - 2023. - № 10
Аннотация: Программа представляет собой клиентскую часть для расчёта на основе обобщённой теории трансмиссионных свойств плазмонного нановолновода. Взаимодействие с программой реализовано через интерфейс командной строки. В результате работы программа создаёт файл формата HDF5 с результатами расчетов. Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской федерации, проект FSRZ-2023-0006. Тип ЭВМ: IBM PC-совместимые. ОС: UNIX-совместимые.

Смотреть свидетельство,
Читать в сети ИФ
Держатели документа:
Сибирский федеральный университет

Доп.точки доступа:
Ершов, Александр Евгеньевич; Ershov, A. E.; Герасимов, Валерий Сергеевич; Gerasimov V. S.; Игнатова, Н. Ю.; Карпов, Сергей Васильевич; Karpov, S. V.; Сибирский федеральный университет; Федеральная служба по интеллектуальной собственности (Роспатент); Федеральный институт промышленной собственности
}
Найти похожие
5.
Гос. рег. прогр. для ЭВМ 2023681317 Российская Федерация

   
    Программа визуализации расчётов трансмиссионных свойств плазмонного нановолновода / А. Е. Ершов, B. C. Герасимов, Н. Ю. Игнатова, С. В. Карпов. - № 2023680211 ; Заявл. 03.10.2022 ; Опубл. 12.10.2022 // Программы для ЭВМ. Базы данных. Топологии интегральных микросхем : офиц. бюл. Фед. службы по интеллектуал. собственности (Роспатент). - 2023. - № 10
Аннотация: Программа представляет собой средство для визуализации данных, полученных при помощи Программы расчёта трансмиссионных свойств плазмонного нановолновода. Ввод данных реализован через интерфейс командной строки. На вход программа получает файл формата HDF5 . В результате работы программа визуализирует данные при помощи графического интерфейса библиотеки MATPLOTLIB. Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской федерации, проект FSRZ-2023-0006. Тип ЭВМ: IBM PC-совмест. ПК. ОС: UNIX-совместимые.

Смотреть свидетельство,
Читать в сети ИФ
Держатели документа:
Сибирский федеральный университет

Доп.точки доступа:
Ершов, Александр Евгеньевич; Ershov, A. E.; Герасимов, Валерий Сергеевич; Gerasimov V. S.; Игнатова, Н. Ю.; Карпов, Сергей Васильевич; Karpov, S. V.; Сибирский федеральный университет; Федеральная служба по интеллектуальной собственности (Роспатент); Федеральный институт промышленной собственности
}
Найти похожие
6.


   
    Ring of bound states in the continuum in the reciprocal space of a monolayer of high-contrast dielectric spheres / A. S. Kostyukov, V. S. Gerasimov, A. E. Ershov, E. N. Bulgakov // Phys. Rev. B. - 2022. - Vol. 105, Is. 7. - Ст. 075404, DOI 10.1103/PhysRevB.105.075404. - Cited References: 43. - This research was supported by RFBR, Krasnoyarsk Territory, and Krasnoyarsk Regional Fund of Science, Project No. 20-42-240003, by the Ministry of Science and Higher Education of the Russian Federation, Project No. FSRZ-20200008 . - ISSN 2469-9950. - ISSN 2469-9969
РУБ Materials Science, Multidisciplinary + Physics, Applied + Physics, Condensed Matter
Рубрики:
PHOTONIC BAND-STRUCTURE
   FANO RESONANCES

   SCATTERING

Аннотация: We consider light scattering by two-dimensional arrays of high-index dielectric spheres arranged into a triangular and square lattices. We demonstrate the appearance of the double degenerate accidental super-BIC modes with extremely suppressed radiative losses in the vicinity of the Γ point of the leaky band of the triangular lattice. Two rings of BICs (circular lines of BICs in reciprocal space) with different polarization appear at the point of the super-BIC destruction. The radius of the ring BIC (RBIC) changes as a function of the sphere's radius. We propose a generic analytical expression to describe the behavior of the guided mode decay rate as a function of the sphere radii and the wave vector in the vicinity of the RBIC. The results are explained using a multipolar approach.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Fed Univ, Int Res Ctr Spect & Quantum Chem, Krasnoyarsk 660041, Russia.
Inst Computat Modelling SB RAS, Krasnoyarsk 660036, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kostyukov, A. S.; Gerasimov, V. S.; Ershov, A. E.; Bulgakov, E. N.; Булгаков, Евгений Николаевич; RFBR Russian Foundation for Basic Research (RFBR); Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science [20-42-240003]; Ministry of Science and Higher Education of the Russian Federation [FSRZ-20200008]
}
Найти похожие
7.


   
    Part I. Nanobubbles in pulsed laser fields for anticancer therapy: in search of adequate models and simulation approaches / A. S. Kostyukov, I. L. Isaev, A. E. Ershov [et al.] // J. Phys. D. - 2022. - Vol. 55, Is. 17. - Ст. 175401, DOI 10.1088/1361-6463/ac4c20. - Cited References: 99. - The research was supported by the Ministry of Science and High Education of Russian Federation (Project No. FSRZ-2020-0008), and was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, Project Number 20-42-240003 . - ISSN 0022-3727. - ISSN 1361-6463
   Перевод заглавия: Часть I. Нанопузырьки в импульсных лазерных полях для противораковой терапии: в поисках адекватных моделей и вычислительных подходов
РУБ Physics, Applied
Рубрики:
INDUCED CELL-LYSIS
   GOLD NANOPARTICLES

   SELECTIVE NANOPHOTOTHERMOLYSIS

Кл.слова (ненормированные):
photothermal effect -- plasmonic nanoparticle -- malignant cell membrane -- pulsed laser radiation -- finite element analysis -- anticancer therapy
Аннотация: We numerically investigate the conditions for the laser-induced formation of nanobubbles in aqueous medium around plasmonic nanoparticles (NPs) bound to the malignant cell membranes that is considered as the method of their irreversible damage. We proposed employing the versatile and accessible simulation software as a research tool based on the finite volume method underlying the ANSYS Fluent package and supplemented with our user-defined functions that adapt it to solution of the stated problems. This adaptation allows to verify the model using experimental data for the same conditions. We determined the conditions for the pressure growth on the cell membrane at the initial moment of bubble formation significantly exceeding the threshold of irreversible damage. The model can be used for investigation of hydrodynamic effects accompanying irradiation of plasmonic NPs using both different types of pulsed lasers and ideally absorbing NPs with resonance in the hemoglobin spectral transparency range, as well as to uncover previously unknown effects. They include the conditions for localization of a damaging factor non-affecting the normal cells, the conditions for generation of ultrahigh pressure pulse that enables to damage the cell membrane and precedes formation of thin vapor shell around NPs, which, unlike large bubbles, requires registration using highly sensitive experimental measurements. An extensive overview of key publications summarizing the state-of-art in this area is presented.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Siberian Fed Univ, Int Res Ctr Spect & Quantum Chem IRC SQC, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, Inst Computat Modelling, Krasnoyarsk 660036, Russia.
Fed Med Biol Agcy Russian Federat, Fed Siberian Res Clin Ctr, Krasnoyarsk 660037, Russia.
Russian Acad Sci, Siberian Branch, Fed Res Ctr KSC, LV Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kostyukov, A. S.; Isaev, I. L.; Ershov, A. E.; Gerasimov, V. S.; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Ministry of Science and High Education of Russian Federation [FSRZ-2020-0008]; RFBRRussian Foundation for Basic Research (RFBR); Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science [20-42-240003]
}
Найти похожие
8.


   
    Part II. Nanobubbles around plasmonic nanoparticles in terms of modern simulation modeling: what makes them kill the malignant cells? / A. S. Kostyukov, I. L. Isaev, A. E. Ershov [et al.] // J. Phys. D. - 2022. - Vol. 55, Is. 17. - Ст. 175402, DOI 10.1088/1361-6463/ac4c1f. - Cited References: 49. - The research was supported by the Ministry of Science and High Education of Russian Federation (Project No. FSRZ-2020-0008), and was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, Project No. 20-42-240003 . - ISSN 0022-3727. - ISSN 1361-6463
   Перевод заглавия: Часть II. Нанопузырьки вокруг плазмонных наночастиц с точки зрения современного имитационного моделирования: что заставляет их убивать злокачественные клетки?
РУБ Physics, Applied
Рубрики:
STRESS WAVES
   LASER

   MEMBRANE

   DAMAGE

   DEATH

   LYSIS

Кл.слова (ненормированные):
photothermal effect -- plasmonic nanoparticle -- malignant cell membrane -- pulsed laser radiation -- finite elements analysis -- anticancer therapy -- aptamer
Аннотация: We have established numerically the physical pattern and conditions for formation of nanosized bubbles in aqueous medium around biocompatible plasmonic nanoparticles (NPs) selectively bound to the membrane of the malignant cells by means of DNA-aptamers under the action of picosecond laser radiation. The results obtained are based on the finite volume method and hydrodynamic models underlying the ANSYS Fluent package with extended capabilities. We have found the main features and previously unknown dominant factors of the damage effect on the cell membrane at the moment of the bubble nucleation around the plasmonic NPs of different types taking into account the influence of the closely located membrane. Information on the kinetics of spatial distribution of pressure, temperature and the relative proportion of vapor in the 'nanoparticle-membrane-medium' system have been obtained. The attention is drawn to the advantages of using biocompatible, perfectly absorbing core–shell plasmonic NPs for anti-tumor therapy characterized by an increased mechanical effect on malignant cell membranes at lower laser radiation intensity and the spectral position of their plasmon resonance (λ = 700 nm) in the hemoglobin transparency range. This ensures penetration of laser radiation deep into tissues. The paper is provided with an extensive review of key publications and the state-of-art in this area.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Siberian Fed Univ, Int Res Ctr Spect & Quantum Chem IRC SQC, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Inst Computat Modelling, Siberian Branch, Krasnoyarsk 660036, Russia.
Fed Med Biol Agcy Russian Federat, Fed Siberian Res Clin Ctr, Krasnoyarsk 660037, Russia.
Russian Acad Sci, LV Kirensky Inst Phys, Fed Res Ctr KSC, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kostyukov, A. S.; Isaev, I. L.; Ershov, A. E.; Gerasimov, V. S.; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Ministry of Science and High Education of Russian Federation [FSRZ-2020-0008]; RFBRRussian Foundation for Basic Research (RFBR); Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science [20-42-240003]
}
Найти похожие
9.


   
    Medium dependent optical response in ultra-fine plasmonic nanoparticles / L. K. Sorensen, D. E. Khrennikov, V. S. Gerasimov [et al.] // Phys. Chem. Chem. Phys. - 2022. - Vol. 24, Is. 39. - P. 24062-24075, DOI 10.1039/d2cp02929d. - Cited References: 52. - DEK, VSG, SVK acknowledge the support of the Russian Science Foundation (project no. 18-13-00363). L. K. S. acknowledges the support of Carl Tryggers Stiftelse, project CTS 18-441. We also acknowledge the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) partially funded by the Swedish Research Council through grant agreement no. 2021/3-22 . - ISSN 1463-9084
   Перевод заглавия: Зависимость оптического отклика сверхмалых плазмонных наночастиц от окружающей среды
Аннотация: We study the influence of media on the interaction of ultra-fine plasmonic nanoparticles (≤ 8 nm) with radiation. The important role of the surface layer of the nanoparticles, with properties that differ from the ones in the inner part, is established. Using an atomistic representation of the nanoparticle material and its interaction with light, we find a highly inhomogeneous distribution of the electric field inside and around the particles. It is predicted that with an increase in the refractive index of the ambient medium, the extension of the surface layer of atoms increases, something that also is accompanied by an enhanced red shift of the plasmon resonance band compared to large particles in which the influence of this layer and its relative volume is reduced. It is shown that the physical origin for the formation of a surface layer of atoms near the nanoparticle boundary is related to the anisotropy of the local environment of atoms in this layer which changes the conditions for the interaction of neighboring atoms with each other and with the incident radiation. It is shown that a growth of the refractive index of the ambient medium results in an increase in the local field in the dielectric cavity in which a plasmonic nanoparticle is embedded and which is accompanied by a growth of the amplitude of the plasmon resonance. We predict that in the ultra-fine regime the refractive index sensitivity shows a decreasing trend with respect to size which is opposite to that for larger particles. With the applied atomistic model this work demonstrates close relations between field distributions and properties of ultra-fine nanoparticles.

Смотреть статью,
Scopus
Держатели документа:
Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden. lasse.kragh.soerensen@gmail.com
Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, SE-10691, Sweden
University Library, University of Southern Denmark, DK-5230 Odense M, Denmark
International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modelling, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Federal Siberian Research Clinical Centre under FMBA of Russia, 660037, Kolomenskaya, 26 Krasnoyarsk, Russia
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Sorensen, L. K.; Khrennikov, D. E.; Gerasimov, V. S.; Ershov, A. E.; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Agren, H.
}
Найти похожие
10.


   
    Thermo-optic hysteresis with bound states in the continuum / D. N. Maksimov, A. S. Kostyukov, A. E. Ershov [et al.] // Phys. Rev. A. - 2022. - Vol. 106, Is. 6. - Ст. 063507, DOI 10.1103/PhysRevA.106.063507. - Cited References: 52. - This work received financial support through the Russian Science Foundation and Krasnoyarsk Regional Fund of Science under Grant No. 22-22-20056 [52]. The authors acknowledge discussions with A. A. Bogdanov . - ISSN 2469-9926. - ISSN 2469-9934
Аннотация: We consider thermo-optic hysteresis in a silicon structure supporting bound states in the continuum. Taking into account radiative heat transfer as a major cooling mechanism we constructed a nonlinear model describing the optical response. It is shown that the thermo-optic hysteresis can be obtained with low intensities of incident light I0 ≈ 1 W/m2 at the red edge of the visible under the critical coupling condition.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
IRC SQC, Siberian Federal University, 660041 Krasnoyarsk, Russia
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
Institute of Computational Modelling SB RAS, 660036 Krasnoyarsk, Russia

Доп.точки доступа:
Maksimov, D. N.; Максимов, Дмитрий Николаевич; Kostyukov, A. S.; Ershov, A. E.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Bulgakov, E. N.; Булгаков, Евгений Николаевич; Gerasimov, V. S.
}
Найти похожие
11.


   
    Nature of the anomalous size dependence of resonance red shifts in ultrafine plasmonic nanoparticles / L. K. Sorensen, D. E. Khrennikov, V. S. Gerasimov [et al.] // J. Phys. Chem. C. - 2022. - Vol. 126, Is. 39. - P. 16804-16814, DOI 10.1021/acs.jpcc.2c03738. - Cited References: 61. - D.K., V.G., A.E., S.P., and S.K. acknowledge the support by the Russian Science Foundation (project no. 18-13-00363). L.K.S acknowledges the support of Carl Tryggers Stifetelse, project CTS 18-441. The authors also acknowledge the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) partially funded by the Swedish Research Council through grant agreement no. 2020/3-29 . - ISSN 1932-7447
   Перевод заглавия: Природа аномальной размерной зависимости резонансных длинноволновых сдвигов в сверхмалых плазмонных наночастицах
Аннотация: Plasmonic red shifts of nanoparticles are commonly used in imaging technologies to probe the character of local environments, and the understanding of their dependence on size, shape, and surrounding media has therefore become an important target for research. The red shift of plasmon resonances changes character at about 8-10 nm of size for spherical gold nanoparticles above this value, the red shift progresses linearly with particle size, while below this size, the red shift changes nonlinearly and more strongly with size. Using an atomistic discrete interaction model, we have studied the special properties of the nanoparticle surface layers and discovered its importance for ultrafine plasmonic nanoparticles and their red shifts. We find that the physical origin for the specific properties inherent to the surface layer of atoms near the nanoparticle boundary is related to the anisotropy of the local environment of atoms in this layer by other atoms. The anisotropy changes the conditions for light-induced nonlocal interactions of neighboring atoms with each other and with the incident radiation compared to the atoms located in the particle core with isotropic nearest surroundings by other atoms. The local anisotropy of the nanoparticle crystal lattice is a geometric factor that increases toward its boundary and that is the most fundamental factor underlying the physical differences between the nanoparticle surface layer and the core material. It is shown that the inflexion point at 8-10 nm is due to a change in the dominant physical origin of the red shift from chaotization of atomically light-induced dipoles within the surface layer in the case of ultrafine nanoparticles to retardation effects for large nanoparticles in which the relative volume of the surface layer decreases rapidly to a negligible value with increasing nanoparticle size. The patterns revealed are the basis for predicting the manifestation of surface layer effects in ultrafine plasmonic nanoparticles of different shapes and composed of different plasmonic materials.

Смотреть статью,
Scopus
Держатели документа:
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, SE-10691, Sweden
University Library, University of Southern Denmark, Odense M, DK-5230, Denmark
International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Federal Research Center KSC SB RAS, Institute of Computational Modelling, Krasnoyarsk, 660036, Russian Federation
Federal Siberian Research Clinical Centre under FMBA of Russia, 26 Krasnoyarsk, Kolomenskaya660037, Russian Federation
Federal Research Center KSC SB RAS, L. V. Kirensky Institute of Physics, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Sorensen, L. K.; Khrennikov, D. E.; Gerasimov, V. S.; Ershov, A. E.; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Agren, H.
}
Найти похожие
12.


   
    Plasmonic enhancement of local fields in ultrafine metal nanoparticles / L. K. Sorensen, A. D. Utyushev, V. I. Zakomirnyi [et al.] // J. Phys. Chem. C. - 2021. - Vol. 125, Is. 5. - P. 13900-13908, DOI 10.1021/acs.jpcc.1c01424. - Cited References: 65. - The work was supported by the Russian Science Foundation (project no. 18-13-00363). L.K.S acknowledges the support of Carl Tryggers Stifetelse, project CTS 18-441 . - ISSN 1932-7447
Кл.слова (ненормированные):
Crystal structure -- Electric fields -- Electromagnetic fields -- Metal nanoparticles -- Plasmonics -- Discrete interaction -- External fields -- High symmetry -- Metallic nanoparticles -- Nanoscale particles -- Near field imaging -- Optical response -- Plasmon field -- Plasmonic nanoparticles
Аннотация: We present an analysis of ultrafine metallic nanoparticles (1-15 nm) with respect to electromagnetic field generation by plasmonic excitations. A number of structures with different symmetries and geometries are studied in order to analyze the distributions of plasmonically generated near-electric fields and the concentration of hot and cold spots around the particles. The study is made possible by the recent development of an extended discrete interaction model (Ex-DIM) where the explicit dependency of the plasmonic spectra on the structure and composition of particles in the range of 1-15 nm is accounted for. With the Ex-DIM, the optical response of the internal crystal structure of the nanoscale particles can be visualized, thereby making it possible to predict the dependence of the generated local fields with respect to the position of the particles relative to the external field polarization. The results indicate rather surprising concentrations of the plasmon fields in very confined hot spots also in cases when the particles retain a high symmetry. The consequence of the findings of this study when using small symmetric nanoparticles for near-field imaging is briefly discussed.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, SE-10691, Sweden
International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modelling, Federal Research Center Ksc Sb Ras, Krasnoyarsk, 660036, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center Ksc Sb Ras, Krasnoyarsk, 660036, Russian Federation
Federal Siberian Research Clinical Centre under Fmba of Russia, Krasnoyarsk, 660037, Russian Federation

Доп.точки доступа:
Sorensen, L. K.; Utyushev, A. D.; Zakomirnyi, V. I.; Gerasimov, V. S.; Ershov, A. E.; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Agren, H.
}
Найти похожие
13.


   
    Plasmonic lattice Kerker effect in ultraviolet-visible spectral range / V. S. Gerasimov, A. E. Ershov, R. G. Bikbaev [et al.] // Phys. Rev. B. - 2021. - Vol. 103, Is. 3. - Ст. 035402, DOI 10.1103/PhysRevB.103.035402. - Cited References: 66. - The research was supported by the Ministry of Science and High Education of Russian Federation, Project No. FSRZ-2020-0008, by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-42-240003 and by the Russian Science Foundation (Project No. 18-13-00363) (numerical calculations of phase dependences and corresponding research), A. E. acknowledges the grant of the President of the Russian Federation, agreement No. 075–15–2019–676 . - ISSN 2469-9950
   Перевод заглавия: Эффект Керкера на плазмонной решетке в ультрафиолетовой и видимой области спектра
Кл.слова (ненормированные):
Aluminum -- Dielectric materials -- Geometry -- Nanostructures -- Plasmons -- Surface plasmon resonance
Аннотация: Mostly forsaken, but revived after the emergence of all-dielectric nanophotonics, the Kerker effect can be observed in a variety of nanostructures from high-index constituents with strong electric and magnetic Mie resonances. A necessary requirement for the existence of a magnetic response limits the use of generally nonmagnetic conventional plasmonic nanostructures for the Kerker effect. In spite of this, we demonstrate here the emergence of the lattice Kerker effect in regular plasmonic Al nanostructures. Collective lattice oscillations emerging from the delicate interplay between Rayleigh anomalies and localized surface plasmon resonances both of electric and magnetic dipoles, and electric and magnetic quadrupoles result in suppression of the backscattering in a broad spectral range. Variation of geometrical parameters of Al arrays allows for tailoring the lattice Kerker effect throughout UV and visible wavelength ranges, which is close to impossible to achieve using other plasmonic or all-dielectric materials. It is argued that our results set the ground for wide ramifications in the plasmonics and further application of the Kerker effect.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modelling of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Optics, University of Rochester, Rochester, NY 14627, United States

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A. E.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Rasskazov, I. L.; Isaev, I. L.; Semina, P. N.; Kostyukov, A. S.; Zakomirnyi, V. I.; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
14.


   
    Substrate-mediated lattice Kerker effect in Al metasurfaces / A. S. Kostyukov, A. E. Ershov, R. G. Bikbaev [et al.] // J. Opt. Soc. Am. B. - 2021. - Vol. 38, Is. 9. - P. C78-C83, DOI 10.1364/JOSAB.427939. - Cited References: 62. - Funding. Russian Foundation for Basic Research, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science (20-42-240003); Ministry of Science and Higher Education of the Russian Federation (FSRZ-2020-0008) . - ISSN 0740-3224
Кл.слова (ненормированные):
Plasmonic nanoparticles -- Refractive index -- Half-space environment -- Non-homogeneous -- Regular array -- Sensing applications -- Surface lattice -- Theoretical treatments -- Two-dimensional arrays -- Wavelength ranges -- Geometry
Аннотация: Surface lattice resonances (SLRs) emerging in regular arrays of plasmonic nanoparticles (NPs) are known to be exceptionally sensitive to the homogeneity of the environment. It is considered necessary to have a homogeneous environment for engineering narrowband SLRs, while in a half-space environment, SLRs rapidly vanish as the contrast between the refractive indices of the substrate and superstrate increases. From this conventional wisdom, it is apparent that the delicate lattice Kerker effect emerging from SLRs and resonances on constituent NPs should be difficult to achieve in a non-homogeneous environment. Using a rigorous theoretical treatment with multipolar decomposition, we surprisingly find and explain a narrowband substrate-mediated lattice Kerker effect in two-dimensional arrays of Al nanocylinders in a half-space geometry. We propose to use this effect for sensing applications and demonstrate its broad tunability across the UV/Vis wavelength range.

Смотреть статью,
Scopus,
WOS
Держатели документа:
International Research Center of Spectroscopy and Quantum Chemistry-IRC SQC, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
The Institute of Optics, University of Rochester, Rochester, NY 14627, United States

Доп.точки доступа:
Kostyukov, A. S.; Ershov, A. E.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Gerasimov, V. S.; Rasskazov, I. L.; Karpov, S. V.; Карпов, Сергей Васильевич; Polyutov, S. P.
}
Найти похожие
15.


   
    Effect of the surface shape of a large space body on its fragmentation in a planetary atmosphere / D. E. Khrennikov, A. K. Titov, A. E. Ershov [et al.] // Mon. Not. Roy. Astron. Soc. - 2020. - Vol. 493, Is. 1. - P. 1352-1360, DOI 10.1093/mnras/staa330. - Cited References: 38 . - ISSN 0035-8711. - ISSN 1365-2966
РУБ Astronomy & Astrophysics
Рубрики:
LARGE METEOROIDS
Кл.слова (ненормированные):
meteorites, meteors, meteoroids -- minor planets, asteroids: general
Аннотация: Employing the finite element and computational fluid dynamics methods, we have determined the conditions for the fragmentation of space bodies or preservation of their integrity when they penetrate into the Earth's atmosphere. The origin of forces contributing to the fragmentation of space iron bodies during the passage through the dense layers of the planetary atmosphere has been studied. It was shown that the irregular shape of the surface can produce transverse aerodynamic forces capable of causing deformation stress in the body exceeding the tensile strength threshold of iron.

Смотреть статью,
Читать в сети ИФ,
Scopus,
WOS
Держатели документа:
Siberian Fed Univ, Svobodny Av 79-10, Krasnoayrsk 660041, Russia.
Moscow Inst Phys & Technol, Inst Sky Per 9, Dolgopnany 141700, Russia.
Inst Computat Modeling SB RAS, Akademgorodok 50-44, Krasnoyarsk 660036, Russia.
Fed Res Ctr KSC SB RAS, LV Kirensky Inst Phys, Akademgorodok 50-38, Krasnoyarsk 660036, Russia.
PN Lebedev Phys Inst, Leninsky Prosp 53, Moscow 119991, Russia.
Siberian State Univ Sci & Technol, Krasnoyarsky Rabochy Av 31, Krasnoyarsk 660014, Russia.

Доп.точки доступа:
Khrennikov, D. E.; Titov, A. K.; Ershov, A. E.; Ершов, Александр Евгеньевич; Klyuchantsev, A. B.; Pariev, V. I.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
16.


   
    Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates* / A. E. Ershov, V. S. Gerasimov, I. L. Isaev [et al.] // Chin. Phys. B. - 2020. - Vol. 29, Is. 3. - Ст. 037802, DOI 10.1088/1674-1056/ab6551. - Cited References: 38. - Project funded by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science (Grant 18-42-243023), the RF Ministry of Science and Higher Education, and the State Contract with Siberian Federal University for Scientific Research. A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676). . - ISSN 1674-1056. - ISSN 1741-4199
Рубрики:
SELECTIVE PHOTOMODIFICATION
   LIGHT

   FORCES

   OPTICS

Кл.слова (ненормированные):
nanoparticle -- surface plasmon resonance -- photochromic process -- pulsed laser radiation
Аннотация: We have studied the dynamic and static processes occurring in disordered multiparticle colloidal Ag aggregates with natural structure and affecting their plasmonic absorption spectra under pico- and nanosecond pulsed laser radiations, as well as the physical origin responsible for these processes. We have shown that depending on the duration of the laser pulse, the mechanisms of laser modification of such aggregates can be associated both with changes in the resonant properties of the particles due to their heating and melting (picosecond irradiation mode) and with the particle shifts in the resonant domains of the aggregates (nanosecond pulses) which depend on the wavelength, intensity, and polarization of the radiation. These mechanisms result in formation of a narrow dip in the plasmonic absorption spectrum of the aggregates near the laser radiation wavelength and affect the shape and position of the dip. The effect of polydispersity of nanoparticle aggregates on laser photochromic reaction has been studied.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
RAS, SB, Inst Computat Modeling, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
RAS, SB, KSC, Kirensky Inst Phys,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian State Univ Sci & Technol, Krasnoyarsk 660014, Russia.

Доп.точки доступа:
Ershov, A. E.; Gerasimov, V. S.; Isaev, I. L.; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR); Government of the Krasnoyarsk Territory [18-42-243023]; Krasnoyarsk Regional Fund of Science [18-42-243023]; RF Ministry of Science and Higher Education; Siberian Federal University for Scientific Research; Russian FederationRussian Federation [075-15-2019-676]
}
Найти похожие
17.


   
    Engineering novel tunable optical high-Q nanoparticle array filters for a wide range of wavelengths / A. D. Utyushev, I. L. Isaev, V. S. Gerasimov [et al.] // Opt. Express. - 2020. - Vol. 28, Is. 2. - P. 1426-1438, DOI 10.1364/OE.28.001426. - Cited References: 62. - The reported study was funded by the Russian Science Foundation, project No. 18-13-00363; the grant of the President of Russian Federation for young scientists No. 075-15-2019-676 (calculations of the electromagnetic field configurations in NPs array) . - ISSN 1094-4087
Рубрики:
Nanophotonics, Metamaterials, and Photonic Crystals
Аннотация: The interaction of non-monochromatic radiation with arrays comprising plasmonic and dielectric nanoparticles has been studied using the finite-difference time-domain electrodynamics method. It is shown that LiNbO3, TiO2, GaAs, Si, and Ge all-dielectric nanoparticle arrays can provide a complete selective reflection of an incident plane wave within a narrow spectral line of collective lattice resonance with a Q-factor of 103 or larger at various spectral ranges, while plasmonic refractory TiN and chemically stable Au nanoparticle arrays provide high-Q resonances with moderate reflectivity. Arrays with fixed dimensional parameters make it possible to fine-tune the position of a selected resonant spectral line by tilting the array relative to the direction of the incident radiation. These effects provide grounds for engineering novel selective tunable optical high-Q filters in a wide range of wavelengths, from visible to middle-IR.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, Krasnoyarsk 660041, Russia
Siberian State University of Science and Technology, 660014 Krasnoyarsk, Russia
Institute of Computational Modeling, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
Federal Siberian Research Clinical Center under FMBA of Russia, Krasnoyarsk 660037, Russia
Division of Theoretical Chemistry and Biology, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
The Institute of Optics, University of Rochester, Rochester, NY 14627, USA

Доп.точки доступа:
Utyushev, A. D.; Isaev, I. L.; Gerasimov, V. S.; Ershov, A. E.; Zakomirnyi, V. I.; Закомирный, Вадим Игоревич; Rasskazov, I. L.; Polyutov, S. P.; Полютов, Сергей Петрович; Ågren, H.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
18.


   
    Mode coupling in arrays of Al nanoparticles [Preprint] / A. E. Ershov, V. S. Gerasimov, R. G. Bikbaev [et al.]. - Electronic text data // ArXiv. - 2020. - Ст. 1912.12830. - Cited References: 78. - The reported study was funded by the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No.18-42-240013); A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676)
Кл.слова (ненормированные):
plasmonics -- aluminum -- surface lattice resonances
Аннотация: The mechanisms of coupling between the lattice modes of a two-dimensional (2D) array consisting of Al nanoparticles and the localized modes of individual Al nanoparticles have been studied in detail. The results have been obtained employing the finite time difference method (FDTD) and the generalized Mie theory. It was shown that interactions of single particles with 2D lattice modes significantly change the extinction spectra depending on the particle radius and the lattice period. The Rayleigh anomalies of higher orders contribute to formation of hybrid modes resulting in increase of the extinction efficiency in short wavelength range of the spectrum. The patterns of spatial electromagnetic field distribution at the frequencies of hybrid modes have been studied. We note that comprehensive understanding the mode coupling mechanisms in arrays paves the way for engineering different types of modern photonic devices with controllable optical properties.

Смотреть статью,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk 660036, Russia
Siberian Federal University, Krasnoyarsk, 660041, Russia
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia
Siberian State University of Science and Technology, 660014, Krasnoyarsk, Russia

Доп.точки доступа:
Ershov, A. E.; Gerasimov, V. S.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Polyutov, S. P.; Полютов, Сергей Петрович; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
19.


   
    Collective lattice resonances in all-dielectric nanostructures under oblique incidence / A. D. Utyushev, V. I. Zakomirnyi, A. E. Ershov [et al.] // Photonics. - 2020. - Vol. 7, Is. 2. - Ст. 24, DOI 10.3390/PHOTONICS7020024. - Cited References: 70. - This research was funded by the RF Ministry of Science and Higher Education, the State contract with Siberian Federal University for scientific research and Russian Science Foundation project 19-72-00066 (investigation of finite size effects) . - ISSN 2304-6732
Кл.слова (ненормированные):
Collective lattice resonance -- Nanoparticle -- All-dielectric nanophotonics -- Mie resonance
Аннотация: Collective lattice resonances (CLRs) emerging under oblique incidence in 2D finite-size arrays of Si nanospheres have been studied with the coupled dipole model. We show that hybridization between the Mie resonances localized on a single nanoparticle and angle-dependent grating Wood-Rayleigh anomalies allows for the efficient tuning of CLRs across the visible spectrum. Complex nature of CLRs in arrays of dielectric particles with both electric dipole (ED) and magnetic dipole (MD) resonances paves a way for a selective and flexible tuning of either ED or MD CLR by an appropriate variation of the angle of incidence. The importance of the finite-size effects, which are especially pronounced for CLRs emerging for high diffraction orders under an oblique incidence has been also discussed.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Department of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Space Materials and Technology, Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
The Institute of Optics, University of Rochester, Rochester, NY 14627, United States

Доп.точки доступа:
Utyushev, A. D.; Zakomirnyi, V. I.; Ershov, A. E.; Gerasimov, V. S.; Karpov, S. V.; Карпов, Сергей Васильевич; Rasskazov, I. L.
}
Найти похожие
20.


   
    Коллективные решеточные резонансы в диэлектрических наноструктурах при наклонных падениях оптического излучения / А. Д. Утюшев, А. Е. Ершов [и др.] // Решетневские чтения : [Электронный ресурс] : материалы XXIV Междунар. науч.-практич. конф., посвящ. памяти ген. конструктора ракет.-космич. систем акад. М. Ф. Решетнева : в 2-х ч. : электронное издание. - Красноярск : СибГУим. М. Ф. Решетнева, 2020. - Ч. 1. - С. 458-460. - Библиогр.: 2. - Работа поддержана Министерством науки и высшего образования Российской Федерации, проект номер ФСРЗ-2020-008.
   Перевод заглавия: Collective lattice resonances dielectric nanostructures at different angles of incidence radiation
Аннотация: Тонкие нанокомпозитные ZnO/SWCNTs пленки были синтезированы с помощью вакуумной фильтрации и атомно-слоевого осаждения. Были измерены вольт-амперные характеристики образцов пленок. Наосновевольт-амперных характеристик было рассчитано электрическое сопротивление для нанокомпозитных ZnO/ОУНТ пленок.

Материалы конференции,
Материалы конференции,
Читать в сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Утюшев, А. Д.; Ершов, Александр Евгеньевич; Ershov, A. E.; Герасимов, Валерий Сергеевич; Gerasimov, V. S.; Закомирный, Вадим Игоревич; Карпов, Сергей Васильевич; Karpov, S.V.; "Решетневские чтения", международная научно-практическая конференция(24 ; 2020 ; нояб. ; 10-13 ; Красноярск); Сибирский государственный университет науки и технологий им. акад. М. Ф. Решетнева; Информационные спутниковые системы им. академика М. Ф. Решетнева, АО; Красноярский машиностроительный завод, ОАО
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)