Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Nanoparticle<.>)
Общее количество найденных документов : 60
Показаны документы с 1 по 20
1.


    Gerasimov, V. S.
    Variations in extinction spectra of plasmonic nanoparticle aggregates upon deformation during deposition on planar dielectric substrate / V. S. Gerasimov, I. L. Rasskazov, S. V. Karpov // Annual Int. Conf. "Days on Diffraction". - 2015. - P. 141-142

Материалы конференции

Доп.точки доступа:
Rasskazov, I. L.; Рассказов, Илья Леонидович; Karpov, S. V.; Карпов, Сергей Васильевич; Герасимов, Валерий Сергеевич; "Days on diffraction", International conference(2015 ; may ; 25-29 ; St. Petersburg); Санкт-Петербургское отделение Института математики им. В. А. Стеклова; Санкт-Петербургский государственный университет; Euler International Mathematical Institute; Российский фонд фундаментальных исследований
}
Найти похожие
2.


   
    Unusual magnetic transitions and nature of magnetic resonance spectra in oxide glasses containing gadolinium / J. . Kliava [et al.] // Phys. Rev. B. - 2005. - Vol. 71, Is. 10. - Ст. 104406, DOI 10.1103/PhysRevB.71.104406. - Cited References: 40 . - ISSN 1098-0121
РУБ Physics, Condensed Matter
Рубрики:
ELECTRON-PARAMAGNETIC-RESONANCE
   BORATE GLASSES

   IONS

   BEHAVIOR

   GD3+

   SPECTROSCOPY

   SYSTEMS

   GD-3+

   FIELD

   SHAPE

Кл.слова (ненормированные):
gadolinium -- glass -- lanthanide -- oxide -- anisotropy -- article -- chemical structure -- concentration response -- electron spin resonance -- energy -- magnetism -- molecular physics -- nanoparticle -- phase transition -- refraction index -- temperature sensitivity
Аннотация: Magnetic susceptibility, electron paramagnetic resonance (EPR), and optical properties have been studied in a glass system {20La(2)O(3)-22Al(2)O(3)-23B(2)O(3)-35(SiO2+GeO2)} with a part of La2O3 substituted by Gd2O3 in different concentrations. Positive Weiss constants have been found in the more heavily doped glasses and ascribed to clustering of Gd3+ ions. Two magnetic phase transitions at 55 and 12 K were detected and ascribed, respectively, to ferromagnetic and antiferromagnetic clusters containing Gd ions. The overall shape of the EPR spectra shows the presence of clustering at the higher Gd contents. At low temperatures the cluster-related resonance signal is altered in shape, indicating an onset of magnetic anisotropy field. This signal is convincingly fitted to superparamagnetic resonance arising from ferromagnetic nanoparticles. The clustering, depending on the Gd concentration, correlates with a significant shift to lower energies of the strong optical absorption band edge, ascribed to a charge transfer transition between Gd ions. A nonmonotonous change of refractive index with the increase of the Gd content indicates changes in the glass matrix and in Gd cluster structure.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Univ Bordeaux 1, CNRS, UMR 5798, CPMOH, F-33405 Talence, France
Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
RAS, SB, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
SI Vavilov State Opt Inst, St Petersburg 199034, Russia
Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
ИФ СО РАН
CPMOH, UMR 5798, CNRS-Universite Bordeaux-I, 33405 Talence Cedex, France
Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
L. V. Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036, Russian Federation
S. V. Vavilov State Optical Institute, St. Petersburg 199034, Russian Federation
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

Доп.точки доступа:
Kliava, J.; Malakhovskii, A. V.; Малаховский, Александр Валентинович; Edelman, I. S.; Эдельман, Ирина Самсоновна; Potseluyko, A. M.; Petrakovskaja, E. A.; Петраковская, Элеонора Анатольевна; Melnikova, S.V.; Мельникова, Светлана Владимировна; Zarubina, T. V.; Petrovskii, G.; Bruckental, Y.; Yeshurun, Y.
}
Найти похожие
3.


   
    Trimetallic magnetite-Ti-Au nanoparticle formation: A theoretical approach / A. S. Fedorov, E. A. Kovaleva, A. E. Sokolov [et al.] // Mater. Chem. Phys. - 2021. - Vol. 271. - Ст. 124847, DOI 10.1016/j.matchemphys.2021.124847. - Cited References: 46. - The reported study was funded by Joint Research Project of Russian Foundation for Basic Research # 19-52-52002 and Ministry of Science and Technology, Taiwan MOST # 109-2112-M-153-003 and # 108-2923-M-153-001-MY3 . - ISSN 0254-0584
Кл.слова (ненормированные):
Magnetite -- Gold core-shell nanoparticles -- DFT calculations -- Magnetite -- Nanomedicine
Аннотация: Geometric, electronic and magnetic structure of planar slabs consisting of magnetite Fe3O4, titanium and gold layers are investigated by DFT-GGA calculations. It is assumed that these slabs can be used to simulate the upper layers of magnetite nanoparticles covered with an intermediate layer of titanium and a gold layer on the surface. Specific energies and spreading parameters (wettability) of the magnetite-gold, magnetite-titanium and titanium-gold interfaces are calculated. The specific energy and spreading parameter of the magnetite-gold interface is found to be negative, while these values of the magnetite-titanium (for thin Ti layer) and magnetite-titan-gold interfaces are significantly positive. This allows us to hope that the intermediate thin layer of titanium at the boundary between the surface of the magnetite nanoparticle and the gold layer stabilizes this three-layer structure and allows obtaining magnetite nanoparticles covered with continuous gold coating.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Tomsk State University, Tomsk, 634050, Russian Federation
National Pingtung University, Pingtung City, Pingtung County 90003, Taiwan

Доп.точки доступа:
Fedorov, A. S.; Федоров, Александр Семенович; Kovaleva, E. A.; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Visotin, M. A.; Высотин, Максим Александрович; Lin, C. R.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич
}
Найти похожие
4.


   
    Towards understanding the triggering of the malignant cell death in high-efficiency magneto-mechanical anticancer therapy / P. N. Semina, I. L. Isaev, S. K. Komogortsev [et al.] // J. Phys. D. - 2023. - Vol. 56, Is. 6. - Ст. 065401, DOI 10.1088/1361-6463/acb0dd. - Cited References: 146. - P N S, A S K, D E K, S P P, S V K acknowledge the support by the Ministry of Science and High Education of Russian Federation (Project No. FSRZ-2020-0008). Experimental analyses were funded by the Ministry of Science and Higher Education of the Russian Federation (Project FWES-2022-0005) – A S K, T N Z. The authors thank Dr S V Saikova for providing the TEM image in figure (b) . - ISSN 0022-3727. - ISSN 1361-6463
Кл.слова (ненормированные):
magnetic nanoparticle -- malignant cell membrane -- apoptosis -- anticancer therapy -- aptamer
Аннотация: The paper discusses schemes for the implementation of magneto-mechanical anticancer therapy and the most probable scenarios of damaging mechanical effects on the membranes of malignant cells by targeted magnetic nanoparticles selectively bound to membrane mechanoreceptors employing aptamers. The conditions for selective triggering of the malignant cell apoptosis in a low-frequency non-heating alternating magnetic field, corresponding to the exceeding threshold value of the force acting on the membrane and its mechanoreceptors, are established using a nanoparticle dynamic simulation. The requirements for the functionality of magnetic nanoparticles and their suitability for biomedical applications are analysed. Attention is paid to the possibility of the formation of magnetite nanoparticle aggregates in an external magnetic field and their localization near tumor cell membranes. It is shown that the scenario involving the process of aggregation of magnetite nanoparticles provides a sufficient magneto-mechanical impact to achieve a therapeutic effect. A possible explanation for the experimentally established fact of successful application of magneto-mechanical therapy using magnetite nanoparticles is presented, in which complete suppression of the Ehrlich carcinoma in an alternating magnetic field as a response to a magnetome-chanical stimulus was demonstrated. This result confirmed the possibility of using the method for high efficiency treatment of malignant neoplasms. The paper is provided with an extensive review of key publications and the state of art in this area.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
International Research Center of Spectroscopy and Quantum Chemistry—IRC SQC, Siberian Federal University, Krasnoyarsk 660041, Russia
Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
L. V. Kirensky Institute of Physics, Federal Research Center KSC the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
Siberian Federal University, Krasnoyarsk 660041, Russia
Tomsk State University, Tomsk 634050, Russia
Federal Siberian Research Clinical Center, Federal Medical Biological Agency of Russian Federation, Krasnoyarsk 660037, Russia

Доп.точки доступа:
Semina, P. N.; Семина, Полина Николаевна; Isaev, I. L.; Исаев, Иван Леонидович; Komogortsev, S. V.; Комогорцев, Сергей Викторович; Klyuchantsev, A. B.; Ключанцев, А. Б.; Kostyukov, A. S.; Blagodatova, A. V.; Khrennikov, D. E.; Kichkailo, A. S.; Кичкайло, Анна Сергеевна; Zamay, T. N.; Замай, Т. Н.; Lapin, I. N.; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Polyutov, S. P.; Полютов, Сергей Петрович; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
5.


   
    Titanium nitride nanoparticles as an alternative platform for plasmonic waveguides in the visible and telecommunication wavelength ranges / V. I. Zakomirnyi [et al.] // Photonics Nanostruc. Fundam. Appl. - 2018. - Vol. 30. - P. 50-56, DOI 10.1016/j.photonics.2018.04.005. - Cited References: 85. - This work was supported by the RF Ministry of Education and Science, the State contract with Siberian Federal University for scientific research in 2017–2019 and SB RAS Program No II.2P (0358-2015-0010). . - ISSN 1569-4410
Кл.слова (ненормированные):
Nanoparticle -- Titanium nitride -- Surface plasmon polariton -- Plasmon waveguide -- Refractory plasmonics
Аннотация: We propose to utilize titanium nitride (TiN) as an alternative material for linear periodic chains (LPCs) of nanoparticles (NPs) which support surface plasmon polariton (SPP) propagation. Dispersion and transmission properties of LPCs have been examined within the framework of the dipole approximation for NPs with various shapes: spheres, prolate and oblate spheroids. It is shown that LPCs of TiN NPs support high-Q eigenmodes for an SPP attenuation that is comparable with LPCs from conventional plasmonic materials such as Au or Ag, with the advantage that the refractory properties and cheap fabrication of TiN nanostructures are more preferable in practical implementations compared to Au and Ag. We show that the SPP decay in TiN LPCs remains almost the same even at extremely high temperatures which is impossible to reach with conventional plasmonic materials. Finally, we show that the bandwidth of TiN LPCs from non-spherical particles can be tuned from the visible to the telecommunication wavelength range by switching the SPP polarization, which is an attractive feature for integrating these structures into modern photonic devices.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Zakomirnyi, V. I.; Rasskazov, I. L.; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Ершов, Александр Евгеньевич; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Agren, H.
}
Найти похожие
6.


   
    Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited]: Publisher's note / V. S. Gerasimov [et al.] // Opt. Mater. Express. - 2017. - Vol. 7, Is. 3. - P. 799-799, DOI 10.1364/OME.7.000799. - Cited References: 1 . - ISSN 2159-3930
Кл.слова (ненормированные):
Optical materials -- High intensity -- Plasmonic nanoparticle -- Pulsed-laser field -- Materials science
Аннотация: This publisher's note amends the author list of [Opt. Mater. Express 7, 5555 (2017)].

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, Urbana, IL, United States

Доп.точки доступа:
Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Karpov, S. V.; Карпов, Сергей Васильевич; Gavrilyuk, A. P.; Zakomirnyi, V. I.; Rasskazov, I. L.; Agren, H.; Polyutov, S. P.
}
Найти похожие
7.


   
    Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited] / V. S. Gerasimov [et al.] // Opt. Mater. Express. - 2017. - Vol. 7, Is. 2. - P. 555-568, DOI 10.1364/OME.7.000555. - Cited References: 68. - This work was performed within the State contract of the RF Ministry of Education and Science for Siberian Federal University for scientific research in 2017-2019 and SB RAS Program No II.2P (0358-2015-0010). The calculations were performed using the MVS-1000 M cluster at the Institute of Computational Modeling, Federal Research Center KSC SB RAS. . - ISSN 2159-3930
Кл.слова (ненормированные):
Aggregates -- Gold -- Nanoparticles -- Plasmons -- Silver -- Ag nanoparticle -- High intensity -- Light-induced process -- Nanoparticle aggregate -- Physical model -- Plasmonic nanoparticle -- Pulsed-laser field -- Thermal interaction -- Pulsed lasers
Аннотация: We have studied light induced processes in nanocolloids and composite materials containing ordered and disordered aggregates of plasmonic nanoparticles accompanied by their strong heating. A universal comprehensive physical model that combines mechanical, electrodynamical, and thermal interactions at nanoscale has been developed as a tool for investigations. This model was used to gain deep insight on phenomena that take place in nanoparticle aggregates under high-intensity pulsed laser radiation resulting in the suppression of nanoparticle resonant properties. Verification of the model was carried out with single colloidal Au and Ag nanoparticles and their aggregates. © 2017 Optical Society of America.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Доп.точки доступа:
Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Karpov, S. V.; Карпов, Сергей Васильевич; Gavrilyuk, A. P.; Zakomirnyi, V. I.; Rasskazov, I. L.; Agren, H.; Polyutov, S. P.
}
Найти похожие
8.


   
    The model of resonant domain of metal nanoparticle aggregates in pulsed laser fields / A. P. Gavrilyuk, S. V. Karpov // Proceedings of SPIE - The International Society for Optical Engineering / sponsors: SPIE Russia Chapter, National Academy of Sciences, Belarus, Russian Academy of Sciences, Belarus Foundation for Basic Research, Russian Physical Society ; ICONO 2007: Novel Photonics Materials; Optics and Optical Diagnostics of Nanostructures (2007 ; 28.05 - 01.06 ; Минск) : S P I E - International Society for Optical Engineering, 2007. - 6728. - С. 67281T, DOI 10.1117/12.752386 . - ISBN 0819468851
ГРНТИ


РИНЦ,
Источник статьи
Держатели документа:
Institute of Computational Modeling,Russian Academy of Science
Institute of Physics,Russian Academy of Science
Доп.точки доступа:
sponsors: SPIE Russia Chapter, National Academy of Sciences, Belarus, Russian Academy of Sciences, Belarus Foundation for Basic Research, Russian Physical Society; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич; ICONO 2007: Novel Photonics Materials; Optics and Optical Diagnostics of Nanostructures(2007 ; 28.05 - 01.06 ; Минск)
Нет сведений об экземплярах (Источник в БД не найден)
}
Найти похожие
9.


   
    Temperature dependent elastic repulsion of colloidal nanoparticles with a polymer adsorption layer / A. P. Gavrilyuk [et al.] // Colloid Polym. Sci. - 2018. - Vol. 296, Is. 10. - P. 1689-1697, DOI 10.1007/s00396-018-4383-y. - Cited References: 49. - The reported research was funded by the Russian Foundation for Basic Research, the government of the Krasnoyarsk territory and Krasnoyarsk Regional Fund of Science, grant 18-42-243023, the RF Ministry of Science and Education, the State contract with Siberian Federal University for scientific research in 2017-2019, and SB RAS Program No II.2P (0358-2015-0010). . - ISSN 0303-402X. - ISSN 1435-1536
РУБ Chemistry, Physical + Polymer Science
Рубрики:
STERICALLY-STABILIZED PARTICLES
   DEPLETION FLOCCULATION

   AGGREGATION

Кл.слова (ненормированные):
Nanoparticle -- Adsorption layer -- Elastic deformation -- Coagulation -- kinetics -- Elasticity modulus
Аннотация: The model of pairwise elastic repulsion of contacting colloidal nanoparticles with a rigid core and deformable shell is discussed. A simple analytical equation is applied for the energy of elastic repulsion of nanoparticles with arbitrary sizes and the elasticity moduli of self-healing polymer adsorption layers. The model is based on the representation of the absorption layer as a continuous medium that is elastically deformed upon the contact of nanoparticles. The major characteristic of this medium is the elasticity modulus. The magnitude of the elasticity modulus is determined from the condition of balance of the van der Waals attractive forces of nanoparticles and the elastic repulsion of their adsorption layers in the contact area, taking into account the temperature variations. We employed the kinetic approach to describe the dependence of the elasticity modulus on both the temperature and the rate of its change.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
RAS, SB, Inst Computat Modeling, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Math & Comp Sci, Krasnoyarsk 660041, Russia.
Siberian Fed Univ, Lab Nanotechnol Spect & Quantum Chem, Krasnoyarsk 660041, Russia.
RAS, SB, Fed Res Ctr KSC, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian State Univ Sci & Technol, Krasnoyarsk 660014, Russia.

Доп.точки доступа:
Gavrilyuk, A. P.; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Ершов, Александр Евгеньевич; Karpov, S. V.; Карпов, Сергей Васильевич; Russian Foundation for Basic Research; government of the Krasnoyarsk territory and Krasnoyarsk Regional Fund of Science [18-42-243023]; RF Ministry of Science and Education,; State contract with Siberian Federal University for scientific research in 2017-2019; SB RAS Program [II.2P (0358-2015-0010)]
}
Найти похожие
10.


   
    Synthesis of nickel–carbon nanoparticles by electrical discharge in liquid / V. S. Burakov [et al.] // J. Appl. Spectrosc. - 2018. - Vol. 84, Is. 6. - P. 1006–1013, DOI 10.1007/s10812-018-0578-8. - Cited References: 16 . - ISSN 0021-9037
Кл.слова (ненормированные):
electrical discharge in liquid -- nickel–carbon nanoparticle
Аннотация: Composite nickel–carbon nanoparticles were synthesized by electrical discharge in liquid. The synthesis was carried out in water and ethanol under various discharge conditions, including purging the discharge gap with argon. In water, electrical discharge was conducted between graphite and nickel electrodes. In ethanol, two nickel electrodes were used with the liquid acting as the carbon supplier. The size of the particles obtained, their composition, and the production rate depend on the type of working fluid and synthesis duration. It was also shown that the particle production rate in water is greater than in ethanol, and purging the electrode gap with argon reduces this rate two or three times.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Синтез никель-углеродных наночастиц с помощью электрических разрядов в жидкости [Текст] : статья / В. С. Бураков [и др.] // Журн. прикл. спектроскопии. - 2017. - Т. 84 Вып. 6. - С. 927-935

Держатели документа:
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68-2 Nezavisimost’ Ave., Minsk, Belarus
L. V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Burakov, V. S.; Kiris, V. V.; Nevar, A. A.; Nedelko, M. I.; Tarasenko, N. V.; Churilov, G. N.; Чурилов, Григорий Николаевич
}
Найти похожие
11.


   
    Surface plasmon resonances in liquid metal nanoparticles / A. E. Ershov [et al.] // Appl. Phys. B. - 2017. - Vol. 123, Is. 6. - Ст. 182, DOI 10.1007/s00340-017-6755-2. - This work was performed within the State contract of the RF Ministry of Education and Science for Siberian Federal University for scientifc research in 2017–2019. The numerical calculations were performed using the MVS-1000 M cluster at the Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences. . - ISSN 0946-2171
Кл.слова (ненормированные):
Aggregates -- Dimers -- Gold -- Liquids -- Metal nanoparticles -- Nanoparticles -- Nonlinear optics -- Silver -- Surface plasmon resonance -- Au nanoparticle -- Colloidal aggregates -- Experimental values -- Experimental verification -- Metallic nanoparticles -- Nonlinear optical response -- Plasmonic nanoparticle -- Surface plasmon frequency -- Plasmons
Аннотация: We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition “solid–liquid” in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates. © 2017, Springer-Verlag Berlin Heidelberg.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technologies, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ershov, A. E.; Ершов, Александр Евгеньевич; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
12.


   
    Surface bonding states of nano-crystalline diamond balls / J. L. Peng [et al.] // Int. J. Mod. Phys. B. - 2001. - Vol. 15, Is. 31. - P. 4071-4085, DOI 10.1142/S0217979201007865. - Cited References: 20 . - ISSN 0217-9792
РУБ Physics, Applied + Physics, Condensed Matter + Physics, Mathematical
Рубрики:
PLASMON RESPONSE
   POWDER

   SPECTROSCOPY

   MICROSCOPY

   SILICON

   SI(111)

Кл.слова (ненормированные):
diamond -- article -- crystal structure -- electron -- energy transfer -- nanoparticle -- particulate matter -- structure analysis -- surface property -- transmission electron microscopy
Аннотация: The rough surface of nano-crystalline diamond spheres induces surface electronic states which appear as a broadened pre-peak over approx. 15 eV at the C K-edge energy threshold for carbon in the parallel electron energy loss spectrum (PEELS). This appears to be at least partially due to 1s-pi* transitions, although typically the latter occupy a range of only 4 eV for the sp(2) edge of highly-oriented pyrollytic graphite (HOPG). No pi* electrons appear in the conduction band inside the diamond particles, where all electrons are sp(3) hybridized. PEELS data were also obtained from a chemical vapour deposited diamond film (CVDF) and gem-quality diamond for comparison with the spectra of nano-diamonds. The density of sp(2) and sp(3) states on the surface of diamond nano-crystals is calculated for simple structural models of the diamond balls, including some conjecture about surface structures. The results are used to interpret the sp(2)/sp(3) ratios measured from the PEELS spectra recorded as scans across the particles. Surface roughness at the atomic scale was also examined using high-resolution transmission electron microscopy (HRTEM) and electron nano-diffraction patterns were used to confirm the crystal structures.

WOS,
Scopus
Держатели документа:
RMIT Univ, Dept Appl Phys, Melbourne, Vic 3051, Australia
Univ Sydney, Electron Microscope Unit, Sydney, NSW 2006, Australia
Russian Acad Sci, Siberian Branch, LV Kirensky Phys Inst, Mol Architecture Grp, Krasnoyarsk 660036, Russia
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia
ИФ СО РАН
ИБФ СО РАН
Department of Applied Physics, RMIT University, Swanston Street, Melbourne, Vic. 3051, Australia
Electron Microscope Unit, University of Sydney, NSW 2006, Australia
Molecular Architecture Group, Kirensky Institute of Physics, Institute of Biophysics, 660036 Krasnoyarsk, Russian Federation
School of Physics, University of Melbourne, Parkville, Vic. 3010, Australia

Доп.точки доступа:
Peng, J. L.; Bulcock, S.; Belobrov, P. I.; Белобров, Петр Иванович; Bursill, L. A.
}
Найти похожие
13.


   
    Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state / V. S. Gerasimov [et al.] // Opt. Express. - 2016. - Vol. 24, Is. 23. - P. 26851-26856, DOI 10.1364/OE.24.026851. - Cited References: 24. - This work was performed within the State contract of the RF Ministry of Education and Science for Siberian Federal University for scientific research in 2014–2016 (Reference number 1792) and SB RAS Program No II.2P (0358-2015-0010). The numerical calculations were performed using the MVS-1000 M cluster at the Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences. . - ISSN 1094-4087
Кл.слова (ненормированные):
Electron scattering -- Gold -- Lattice constants -- Liquids -- Melting -- Metal nanoparticles -- Nanoparticles -- Surface plasmon resonance -- Electron phonon couplings -- Experimental spectra -- Experimental values -- Gold Nanoparticles -- Nonlinear optical response -- Plasmonic nanoparticle -- Relaxation constants -- Surface plasmon frequency -- Plasmons
Аннотация: Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electronphonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles. © 2016 Optical Society of America.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarskz, Russian Federation
Division of Theoretical Chemistry and Biology, Royal Institute of Technology, Stockholm, Sweden

Доп.точки доступа:
Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Ершов, Александр Евгеньевич; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Agren, H.; Polyutov, S. P.
}
Найти похожие
14.


   
    Super-efficient laser hyperthermia of malignant cells with core-shell nanoparticles based on alternative plasmonic materials / A. S. Kostyukov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2019. - Vol. 236. - Ст. 106599, DOI 10.1016/j.jqsrt.2019.106599. - Cited References: 57. - The reported study was funded by the RF Ministry of Science and Higher Education , the State contract with Siberian Federal University for scientific research in 2017–2019 (Grant No. 3.8896.2017 ); Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No.18-42-243023); A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676 ). . - ISSN 0022-4073
Кл.слова (ненормированные):
Plasmonic photothermal therapy -- Conducting oxides -- Nanoparticle -- Nanoshell
Аннотация: New type of highly absorbing core-shell AZO/Au (aluminum doped zinc oxide/gold) and GZO/Au (gallium doped zinc oxide/gold) nanoparticles have been proposed for hyperthermia of malignant cells purposes. Comparative studies of pulsed laser hyperthermia were performed for Au nanoshells with AZO core and traditional SiO2 (quartz) core. We show that under the same conditions, the hyperthermia efficiency in the case of AZO increases by several orders of magnitude compared to SiO2 due to low heat capacity of AZO. Similar results have been obtained for GZO core which has same heat capacity. Calculations for pico-, nano- and sub-microsecond pulses demonstrate that reduced pulse duration results in strong spatial localization of overheated areas around nanoparticles, which ensures the absence of negative effects to the normal tissue. Moreover, we propose new alternative way for the optimization of hyperthermia efficiency: instead of maximizing the absorption of nanoparticles, we enhance the thermal damage effect on the membrane of malignant cell. This strategy allows to find the parameters of nanoparticle and the incident radiation for the most effective therapy.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal UniversityKrasnoyarsk, Russian Federation
Institute of Computational Modeling SB RASKrasnoyarsk, Russian Federation
Siberian State University of Science and TechnologyKrasnoyarsk, Russian Federation
The Institute of Optics, University of RochesterNY, United States
Kirensky Institute of Physics, Federal Research Center KSC SB RASKrasnoyarsk, Russian Federation

Доп.точки доступа:
Kostyukov, A. S.; Ershov, A. E.; Ершов, Александр Евгеньевич; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Filimonov, S. A.; Rasskazov, I. L.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
15.


   
    Structure and magnetic properties of biogenic ferrihydrite nanoparticles doped with gadolinium / S. V. Stolyar [et al.] // J. Sib. Fed. Univ. Math. Phys. - 2013. - Vol. 6, Is. 3. - P. 358-365 ; Журн. СФУ. Сер. "Математика и физика" . - ISSN 1997-1397
   Перевод заглавия: Структура и магнитные свойства биогенных наночастиц ферригидрита, легированных гадолинием
Кл.слова (ненормированные):
ferrihydrite nanoparticle -- bacterial culture Klebsiela oxytoca -- Mössbauer spectroscopy -- gadolinium doping
Аннотация: Bacterial culture Klebsiella oxytoca was grown in a Lovley medium at various concentrations of gadolinium salt. Biogenic magnetic nanoparticles of ferrihydrite were investigated by Mossbauer spectroscopy and magnetization curves were obtained. The results of structural studies showed that iron Fe(5) takes new position when cultivating is carried out in medium with high concentrations of gadolinium. It was found that gadolinium is fit into the crystal structure of ferrihydrite. These results are consistent with the analysis of the magnetization curves.

Смотреть статью,
Читать в сети ИФ

Доп.точки доступа:
Stolyar, S. V.; Столяр, Сергей Викторович; Bayukov, O. A.; Баюков, Олег Артемьевич; Ladygina, V. P.; Ischenko, L. A.; Iskhakov, R. S.; Исхаков, Рауф Садыкович

}
Найти похожие
16.


   
    Role of the surface effects and interparticle magnetic interactions in the temperature evolution of magnetic resonance spectra of ferrihydrite nanoparticle ensembles / D. A. Balaev, S. V. Stolyar, Y. V. Knyazev [et al.] // Results Phys. - 2022. - Vol. 35. - Ст. 105340, DOI 10.1016/j.rinp.2022.105340. - Cited References: 119. - Authors thank to A.D. Balaev, S.V. Komogortsev for fruitful discussions and M.N. Volochaev for TEM studies. The TEM study and measurements of X-band FMR spectra were carried out on the equipment of the Krasnoyarsk Territorial Center for Collective Use, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences. This study was supported by the Russian Science Foundation, project no. 21-72-00025 (https://rscf.ru/project/21-72-00025/) "Tuning the Magnetic Properties of Ultrafine Biocompatible Ferrihydrite Nanoparticles through Interparticle Interactions" . - ISSN 2211-3797
Кл.слова (ненормированные):
Ferrihydrite nanoparticles -- Superparamagnetism -- Interparticle magnetic interactions -- Ferromagnetic resonance
Аннотация: Ferrihydrite is characterized by the antiferromagnetic ordering and, in ferrihydrite nanoparticles, as in nanoparticles of any antiferromagnetic material, an uncompensated magnetic moment is formed. We report on the investigations of ferrihydrite powder systems with an average particle size of ∼ 2.5 nm obtained (i) as a product of the vital activity of bacteria (sample FH-bact) and (ii) by a chemical method (sample FH-chem). In the first approximation, these samples can be considered to be identical. However, in sample FH-chem, particles contact directly, while in sample FH-bact, they have organic shells; therefore, the interparticle magnetic interactions in these samples have different degrees. The main goal of this work has been to establish the effects of the interparticle magnetic interactions and individual characteristics of ferrihydrite nanoparticles on ferromagnetic resonance (FMR) spectra. The FMR spectra have been measured at different (9.4–75 GHz) frequencies in a wide temperature range. It has been found that, at low temperatures, the field-frequency dependence ν(HR) of the investigated systems has a gap ν/γ = HR + HA, where HR is the resonance field and HA is the induced anisotropy, which decreases with increasing temperature. To estimate a degree of the effect of interparticle interactions on the results obtained and to correctly determine the temperature range of the superparamagnetic (or blocked) state, the static magnetic measurement and Mössbauer spectroscopy data have been obtained and analyzed. It has been shown that the most striking feature of the FMR spectra - a gap in the field-frequency dependences - is a manifestation of individual characteristics of ferrihydrite nanoparticles. The induced anisotropy is caused by freezing of a subsystem of surface spins and its coupling with the particle core, which is observed in both samples at a temperature of ∼80 K. The temperature range (below 80 K) in which the gap exists corresponds to the blocked state in the FMR technique. In sample FH-bact, the ratio between the FMR parameters HA and linewidth ΔH obeys the standard expression HA ∼ (ΔH)3. In sample FH-chem, however, the interparticle magnetic interactions dramatically affect the behavior of parameters of the FMR spectra, which change nonmonotonically upon temperature variation. This fact is attributed to the collective freezing of the magnetic moments of particles under the conditions of sufficiently strong interactions, which follows from the temperature dependence of the particle magnetic moment relaxation time determined from the Mössbauer spectroscopy and static magnetometry data obtained in weak magnetic fields.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodniy 79, Krasnoyarsk, 660041, Russian Federation
Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Akademgorodok 50, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Balaev, D. A.; Балаев, Дмитрий Александрович; Stolyar, S. V.; Столяр, Сергей Викторович; Knyazev, Yu. V.; Князев, Юрий Владимирович; Yaroslavtsev, R. N.; Ярославцев, Роман Николаевич; Pankrats, A. I.; Панкрац, Анатолий Иванович; Vorotynov, A. M.; Воротынов, Александр Михайлович; Krasikov, A. A.; Красиков, Александр Александрович; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Bayukov, O. A.; Баюков, Олег Артемьевич; Ladygina, V. P.; Iskhakov, R. S.; Исхаков, Рауф Садыкович
}
Найти похожие
17.


   
    Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields / A. E. Ershov [et al.] // Chin. Phys. B. - 2016. - Vol. 25, Is. 11. - Ст. 117806, DOI 10.1088/1674-1056/25/11/117806. - Cited References: 47. - This work was performed within the state contract of the RF Ministry of Education and Science for Siberian Federal University for scientific research in 2016 (Reference number 1792) and SB RAS Program No II.2P (0358-2015-0010). Numerical computations were performed on the cluster MVS-1000 M of the Institute of computational modeling SB RAS. . - ISSN 1674-1056
Кл.слова (ненормированные):
optodynamics -- nanoparticle -- surface plasmon -- laser radiation
Аннотация: We have studied processes of interaction of pulsed laser radiation with resonant groups of plasmonic nanoparticles (resonant domains) in large colloidal nanoparticle aggregates having different interparticle gaps and particle size distributions. These processes are responsible for the origin of nonlinear optical effects and photochromic reactions in multiparticle aggregates. To describe photo-induced transformations in resonant domains and alterations in their absorption spectra remaining after the pulse action, we introduce the factor of spectral photomodification. Based on calculation of changes in thermodynamic, mechanical, and optical characteristics of the domains, the histograms of the spectrum photomodification factor have been obtained for various interparticle gaps, an average particle size, and the degree of polydispersity. Variations in spectra have been analyzed depending on the intensity of laser radiation and various combinations of size characteristics of domains. The obtained results can be used to predict manifestation of photochromic effects in composite materials containing different plasmonic nanoparticle aggregates in pulsed laser fields. © 2016 Chinese Physical Society and IOP Publishing Ltd.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
L. V. Kirensky Institute of Physics of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ershov, A. E.; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Polyutov, S. P.
}
Найти похожие
18.


    Belyaev, B. A.
    Resonances of electromagnetic oscillations in a spherical metal nanoparticle / B. A. Belyaev, V. V. Tyurnev // Microw. Opt. Technol. Lett. - 2016. - Vol. 58, Is. 8. - P. 1883-1886, DOI 10.1002/mop.29930. - Cited References:18 . - ISSN 0895-2477. - ISSN 1098-2760
   Перевод заглавия: Резонансы электромагнитных колебаний в сферической металлической наночастице
РУБ Engineering, Electrical & Electronic + Optics
Рубрики:
OPTICAL-PROPERTIES
   LIGHT

Кл.слова (ненормированные):
plasmonics -- scattering -- particles -- resonators -- resonant modes
Аннотация: Electrodynamic analysis of plasma oscillations in a spherical metal nanoparticle is performed. It is shown that typical reduction in the frequency and quality factor of the resonances with increasing nanoparticle radius fades if the mode number grows. Depending on the particle radius, the resonant enhancement of the electric field might considerably either increase or decrease with increasing mode number. (C) 2016 Wiley Periodicals, Inc.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Siberian Branch, Kirensky Inst Phys, Krasnoyarsk, Russia.
Siberian Fed Univ, Inst Engn Phys & Radio Elect, Krasnoyarsk, Russia.
Reshetnev Siberian State Aerosp Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Tyurnev, V. V.; Тюрнев, Владимир Вениаминович; Беляев, Борис Афанасьевич
}
Найти похожие
19.


   
    Refractory titanium nitride two-dimensional structures with extremely narrow surface lattice resonances at telecommunication wavelengths / V. I. Zakomirnyi [et al.] // Appl. Phys. Lett. - 2017. - Vol. 111, Is. 12. - Ст. 123107, DOI 10.1063/1.5000726. - Cited References: 54. - This work was supported by the RF Ministry of Education and Science, the State contract with Siberian Federal University for scientific research in 2017–2019. Numerical calculations were performed using the MVS-1000M system at the Institute of Computational Modeling of the Siberian Branch of the Russian Academy of Sciences. . - ISSN 0003-6951
Кл.слова (ненормированные):
Bandwidth -- Nanoparticles -- Nanostructures -- Optical properties -- Plasmons -- Q factor measurement -- Refractory materials -- Titanium compounds -- Diffractive grating -- Electromagnetic response -- Localized surface plasmon -- Low cost fabrication -- Plasmonic nanoparticle -- Telecommunication bandwidth -- Telecommunication wavelengths -- Two-dimensional structures -- Titanium nitride
Аннотация: Regular arrays of plasmonic nanoparticles have brought significant attention over the last decade due to their ability to support localized surface plasmons (LSPs) and exhibit diffractive grating behavior simultaneously. For a specific set of parameters (i.e., period, particle shape, size, and material), it is possible to generate super-narrow surface lattice resonances (SLRs) that are caused by interference of the LSP and the grating Rayleigh anomaly. In this letter, we propose plasmonic structures based on regular 2D arrays of TiN nanodisks to generate high-Q SLRs in an important telecommunication range, which is quite difficult to achieve with conventional plasmonic materials. The position of the SLR peak can be tailored within the whole telecommunication bandwidth (from ≈ 1.26 μm to ≈ 1.62 μm) by varying the lattice period, while the Q-factor is controlled by changing nanodisk sizes. We show that the Q-factor of SLRs can reach a value of 2 × 103, which is the highest reported Q-factor for SLRs at telecommunication wavelengths so far. Tunability of optical properties, refractory behavior, and low-cost fabrication of TiN nanoparticles paves the way for manufacturing cheap nanostructures with extremely stable and adjustable electromagnetic response at telecommunication wavelengths for a large number of applications.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Zakomirnyi, V. I.; Rasskazov, I. L.; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Ершов, Александр Евгеньевич; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
20.


   
    Processing of detonation diamonds with metal-containing high-frequency arc plasma and their properties / G. N. Churilov [et al.] // Fuller. Nanotub. Carbon Nanostruct. - 2012. - Vol. 20, Is. 4/7 SI. - P. 611-615, DOI 10.1080/1536383X.2012.657014. - Cited References: 5. - The work was partially supported by RFBR foundation (project 09-03-00383). . - ISSN 1536-383X
РУБ Chemistry, Physical + Nanoscience & Nanotechnology + Materials Science, Multidisciplinary + Physics, Atomic, Molecular & Chemical

Кл.слова (ненормированные):
Nanodiamond -- nanoparticle -- metal-containing plasma
Аннотация: This paper describes coating of diamond powder with metal by plasma. Arc plasma was generated in double jet high-frequency argon-operated plasmatron with atomized metal inserts. The diamond powder was added to the plasma in a flow of helium. Copper and nickel coated particles of detonation and industrial diamonds were studied by XRD, XPS, SEM methods and electron magnetic resonance. Results of these studies are presented.

Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ
Держатели документа:
[Churilov, G. N.
Osipova, I. V.
Vnukova, N. G.
Glushenko, G. A.
Petrakovskaya, E. A.] Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
[Kolonenko, A. L.
Chiganov, A. S.] Krasnoyarsk State Pedag Univ, Krasnoyarsk, Russia
[Tomashevich, Ye. V.
Zhizhaev, A. M.] Russian Acad Sci, Siberian Branch, Inst Chem & Chem Technol, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Churilov, G. N.; Чурилов, Григорий Николаевич; Osipova, I. V.; Осипова, Ирина Владимировна; Vnukova, N. G.; Внукова, Наталья Григорьевна; Glushchenko, G. A.; Глущенко, Гарий Анатольевич; Petrakovskaya, E. A.; Петраковская, Элеонора Анатольевна; Kolonenko, A. L.; Колоненко, Андрей Леонидович; Chiganov, A. S.; Tomashevich, Y. V.; Томашевич, Евгений Владимирович; Zhyzhaev, A. M.; Жижаев, Анатолий Михайлович
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)