Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Plasmons<.>)
Общее количество найденных документов : 22
Показаны документы с 1 по 10
 1-10    11-20   21-22 
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Fedorov A. S., Eremkin E. V., Krasnov P. O., Gerasimov V. S., Agren H., Polyutov S. P.
Заглавие : A hybrid quantum–classical theory for predicting terahertz charge-transfer plasmons in metal nanoparticles on graphene
Колич.характеристики :13 с
Место публикации : J. Chem. Phys. - 2024. - Vol. 160, Is. 4. - Ст.044117. - ISSN 00219606 (ISSN), DOI 10.1063/5.0178247. - ISSN 10897690 (eISSN)
Примечания : Cited References: 61. - This study was funded by the Ministry of Science and High Education of Russian Federation, Project No. FSRZ-2023-0006. The calculations of CTPs in specific NP–graphene complexes were performed within the RSF Grant No. 23-12-20007 and the Krasnoyarsk Territorial Foundation for Support of Scientific and R & D Activities, Agreement No. 256. H. Ågren was supported by the Swedish Science Research Council on Contract No. 2022-03405
Аннотация: Metal nanoparticle (NP) complexes lying on a single-layer graphene surface are studied with a developed original hybrid quantum–classical theory using the Finite Element Method (FEM) that is computationally cheap. Our theory is based on the motivated assumption that the carrier charge density in the doped graphene does not vary significantly during the plasmon oscillations. Charge transfer plasmon (CTP) frequencies, eigenvectors, quality factors, energy loss in the NPs and in graphene, and the absorption power are aspects that are theoretically studied and numerically calculated. It is shown the CTP frequencies reside in the terahertz range and can be represented as a product of two factors: the Fermi level of graphene and the geometry of the NP complex. The energy losses in the NPs are predicted to be inversely dependent on the radius R of the nanoparticle, while the loss in graphene is proportional to R and the interparticle distance. The CTP quality factors are predicted to be in the range ~ 10 – 100. The absorption power under CTP excitation is proportional to the scalar product of the CTP dipole moment and the external electromagnetic field. The developed theory makes it possible to simulate different properties of CTPs 3–4 orders of magnitude faster compared to the original FEM or the finite-difference time domain method, providing possibilities for predicting the plasmonic properties of very large systems for different applications.
Смотреть статью,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Pyatnov M. V., Bikbaev R. G., Timofeev I. V., Ryzhkov I. I., Vetrov S. Ya., Shabanov V. F.
Заглавие : Broadband Tamm plasmons in chirped photonic crystals for light-induced water splitting
Место публикации : Nanomaterials. - 2022. - Vol. 12, Is. 6. - Ст.928. - ISSN 20794991 (ISSN), DOI 10.3390/nano12060928
Примечания : Cited References: 41
Аннотация: An electrode of a light-induced cell for water splitting based on a broadband Tamm plasmon polariton localized at the interface between a thin TiN layer and a chirped photonic crystal has been developed. To facilitate the injection of hot electrons from the metal layer by decreasing the Schottky barrier, a thin n-Si film is embedded between the metal layer and multilayer mirror. The chipping of a multilayer mirror provides a large band gap and, as a result, leads to an increase in the integral absorption from 52 to 60 percent in the wavelength range from 700 to 1400 nm. It was shown that the photoresponsivity of the device is 32.1 mA/W, and solar to hydrogen efficiency is 3.95%.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Mankov Yu. I.
Заглавие : Bulk plasma waves in a randomly inhomogeneous conductor
Место публикации : Phys. Solid State: MAIK Nauka-Interperiodica / Springer, 2012. - Vol. 54, Is. 7. - P.1323-1331. - ISSN 1063-7834, DOI 10.1134/S1063783412070268
Примечания : Cited References: 27
Предметные рубрики: VOLUME PLASMONS
DISPERSION
PLASMAVERLUSTES
SURFACE
Аннотация: The modification of the spectrum and damping of bulk plasma waves due to three-dimensional random inhomogeneities of the density of a degenerate electron gas in a conductor have been investigated using the averaged Green’s function method. The dependences of the frequency and damping of the averaged plasma waves, as well as the position ν m and width Δν of the peak of the imaginary part of the Fourier trans-form of the averaged Green’s function, on the wave vector k have been determined in the self-consistent approximation, which makes it possible to take into account multiple scattering of plasma waves by inhomogeneities. It has been found that, in the long-wavelength region of the spectrum, the decrease revealed in the frequency of the plasma waves is caused by the inhomogeneities, which agrees qualitatively with the behavior of the position of the peak ν m . In the range of large values of the correlation length of inhomogeneities and small values of k, the damping of the plasma waves tends to zero, whereas the width of the peak Δν remains finite, which is due to the nonuniform broadening. A comparison with the data of numerical calculations has been performed.
Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Fedorov A. S., Visotin M. A., Gerasimov V. S., Polyutov S. P., Avramov P. A.
Заглавие : Charge transfer plasmons in the arrays of nanoparticles connected by conductive linkers
Место публикации : J. Chem. Phys. - 2021. - Vol. 154, Is. 8. - Ст.012009. - ISSN 00219606 (ISSN), DOI 10.1063/5.0040128
Примечания : Cited References: 41. - This study was supported by the Russian Science Foundation, Project No. 18-13-00363
Аннотация: Charge transfer plasmons (CTPs) that occur in different topology and dimensionality arrays of metallic nanoparticles (NPs) linked by narrow molecular bridges are studied. The occurrence of CTPs in such arrays is related to the ballistic motion of electrons in thin linkers with the conductivity that is purely imaginary, in contrast to the case of conventional CTPs, where metallic NPs are linked by thick bridges with the real optical conductivity caused by carrier scattering. An original hybrid model for describing the CTPs with such linkers has been further developed. For different NP arrays, either a general analytical expression or a numerical solution has been obtained for the CTP frequencies. It has been shown that the CTP frequencies lie in the IR spectral range and depend on both the linker conductivity and the system geometry. It is found that the electron currents of plasmon oscillations correspond to minor charge displacements of only few electrons. It has been established that the interaction of the CTPs with an external electromagnetic field strongly depends on the symmetry of the electron currents in the linkers, which, in turn, are fully governed by the symmetry of the investigated system. The extended model and the analytical expressions for the CTPs frequencies have been compared with the conventional finite difference time domain simulations. It is argued that applications of this novel type of plasmon may have wide ramifications in the area of chemical sensing.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Fedorov A. S., Visotin M. A., Eremkin E. V., Krasnov P. O., Agren H., Polyutov S. P.
Заглавие : Charge-transfer plasmons of complex nanoparticle arrays connected by conductive molecular bridges
Место публикации : Phys. Chem. Chem. Phys. - 2022. - Vol. 24, Is. 32. - P.19531-19540. - ISSN 14639076 (ISSN), DOI 10.1039/d2cp01811j
Примечания : Cited References: 43. - The work is supported (ASF, EVE, POK, and SPP) by the Russian Science Foundation (project no. 18-13-00363)
Аннотация: Charge-transfer plasmons (CTP) in complexes of metal nanoparticles bridged by conductive molecular linkers are theoretically analysed using a statistic approach. The applied model takes into account the kinetic energy of carriers inside the linkers including its dissipation and the Coulomb energy of the charged nanoparticles. The plasmons are statistically investigated for systems containing a large number of complexes of bridged nanoparticles of realistic sizes generated using a simplified molecular dynamics algorithm, where the geometries of the complexes are dependent on the rate of connection of the linkers with the nanoparticles. As illustrated, the distribution of CTP frequencies in the generated nanoparticle complexes is very inhomogeneous. It has a narrow peak, corresponding to CTP plasmons in dimers, and two broad peaks, corresponding mainly to low and high-frequency oscillations in chains of connected nanoparticles. It is found that in general the plasmon frequencies depend inversely on the value of the complex dipole moment of the plasmon oscillation, where the assumption follows that low-frequency plasmons will be more efficiently excited in an external electromagnetic field. To calculate the CTP energy absorption in this field two model modifications are proposed: a system-external electromagnetic field interaction model and a simplified broadening plasmon peak model where the plasmons are calculated at first without damping and where the delta-shaped oscillation peaks are broadened then due to the damping. It is demonstrated that both modifications lead to a wide and almost monotonic absorption in the IR region for all generated systems containing a large number of bridged nanoparticles due to the presence of a large number of CTPs in this region.
Смотреть статью,
Scopus
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Fedorov A. S., Krasnov P. O., Visotin M. A., Tomilin F. N., Polyutov S. P., Ågren H.
Заглавие : Charge-transfer plasmons with narrow conductive molecular bridges: A quantum-classical theory
Место публикации : J. Chem. Phys. - 2019. - Vol. 150, Is. 24. - Ст.244125. - ISSN 0021-9606, DOI 10.1063/1.5131734. - ISSN 1089-7690(eISSN)
Примечания : Cited References: 56. - This study was supported by the Russian Science Foundation, Project No. 18-13-00363.
Аннотация: We analyze a new type of plasmon system arising from small metal nanoparticles linked by narrow conductive molecular bridges. In contrast to the well-known charge-transfer plasmons, the bridge in these systems consists only of a narrow conductive molecule or polymer in which the electrons move in a ballistic mode, showing quantum effects. The plasmonic system is studied by an original hybrid quantum-classical model accounting for the quantum effects, with the main parameters obtained from first-principles density functional theory simulations. We have derived a general analytical expression for the modified frequency of the plasmons and have shown that its frequency lies in the near-infrared (IR) region and strongly depends on the conductivity of the molecule, on the nanoparticle–molecule interface, and on the size of the system. As illustrated, we explored the plasmons in a system consisting of two small gold nanoparticles linked by a conjugated polyacetylene molecule terminated by sulfur atoms. It is argued that applications of this novel type of plasmon may have wide ramifications in the areas of chemical sensing and IR deep tissue imaging.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Alekseev K. N., Berman G. P., Campbell D. K., Cannon E. H., Cargo M. C.
Заглавие : Dissipative chaos in semiconductor superlattices
Место публикации : Phys. Rev. B: AMERICAN PHYSICAL SOC, 1996. - Vol. 54, Is. 15. - P10625-10636. - ISSN 0163-1829, DOI 10.1103/PhysRevB.54.10625
Примечания : Cited References: 89
Предметные рубрики: NEGATIVE DIFFERENTIAL CONDUCTIVITY
INJECTED SIGNAL
BLOCH OSCILLATIONS
COLLECTIVE EXCITATIONS
DETERMINISTIC CHAOS
MINIBAND TRANSPORT
SURFACE-PLASMONS
TIME-SERIES
LASER
VELOCITY
Аннотация: We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use a semiclassical, balance-equation approach, which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent held produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free-electron lasers, chaos may be observable in SSL's. We clarify the nature of this interesting nonlinear dynamics in the superlattice-external-field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field, and to Josephson junctions.
WOS
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Fedorov A. S., Visotin M. A., Lukyanenko A. V., Gerasimov V. S., Aleksandrovsky A. S.
Заглавие : Intense charge transfer plasmons in golden nanoparticle dimers connected by conductive molecular linkers
Колич.характеристики :7 с
Место публикации : J. Chem. Phys. - 2024. - Vol. 160, Is. 8. - Ст.084110. - ISSN 00219606 (ISSN), DOI 10.1063/5.0183334. - ISSN 10897690 (eISSN)
Примечания : Cited References: 52. - This study was supported by the Russian Science Foundation, Agreement No. 23-12-20007, and the Government of the Krasnoyarsk Territory and the Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, Agreement No. 256
Аннотация: Golden nanoparticle dimers connected by conjugated molecular linkers 1,2-bis(2-pyridyl)ethylene are produced. The formation of stable dimers with 22 nm diameter nanoparticles is confirmed by transmission electron microphotography. The possibility of charge transfer through the linkers between the particles in the dimers is shown by the density functional theory calculations. In addition to localized plasmon resonance of solitary nanoparticles with a wavelength of 530 nm, the optical spectra exhibit a new intense absorption peak in the near-infrared range with a wavelength of ∼780 nm. The emergent absorption peak is attributed to the charge-transfer plasmon (CTP) mode; the spectra simulated within the CTP developed model agree with the experimental ones. This resonant absorption may be of interest to biomedical applications due to its position in the so-called transmission window of biological tissues. The in vitro heating of CTP dimer solution by a laser diode with a wavelength of 792 nm proved the efficiency of CTP dimers for achieving a temperature increase of ΔT = 6 °C, which is sufficient for hyperthermia treatment of malignant tumors. This indicates the possibility of using hyperthermia to treat malignant tumors using the material we synthesized.
Смотреть статью
Найти похожие
9.

Вид документа : Статья из сборника (однотомник)
Шифр издания :
Автор(ы) : Popov A.K., Shalaev M.I., Myslivets S. A., Slabko V.V.
Заглавие : Negative-index nonlinear optics: phonons vs plasmons
Коллективы : International Conference on Electrodynamics of complex Materials for Ad­vanced Technologies, Самаркандский государственный университет им. А. Навои
Место публикации : Proc. Int. Conf. on Electrodynamics of complex Materials for Ad­vanced Technologies (PLASMETA'11). - 2011. - С. 43-44
Материалы конференции,
Читать в сети ИФ
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Bikbaev R. G., Vetrov S. Ya., Timofeev I. V., Shabanov V. F.
Заглавие : Photosensitivity and reflectivity of the active layer in a Tamm-plasmon-polariton-based organic solar cell
Место публикации : Appl. Opt. - 2021. - Vol. 60, Is. 12. - P.3338-3343. - ISSN 1559128X (ISSN), DOI 10.1364/AO.421374
Примечания : Cited References: 49. - The reported study was funded by the grant of the President of Russian Federation No. MK-46.2021.1.2 and by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund to the research project No. 19-42-240004
Аннотация: We report on a model of an organic solar cell in which a photosensitive layer doped with plasmon nanoparticles acts as not only an absorbing element but also a mirror involved in the formation of the Tamm plasmon polariton. It is shown that such solar cells can be fabricated without metal contacts, thus avoiding undesired losses in the system. Methods for an additional increase in the integral absorption by applying metal or dielectric mirrors to the lower boundary of the photonic crystal are proposed. It has been found that the integral absorption in the active layer can be increased by15%compared to classical optimized planar solar cells.
Смотреть статью,
Scopus,
WOS
Найти похожие
 1-10    11-20   21-22 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)