Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=plasmonic<.>)
Общее количество найденных документов : 49
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-49 
1.


   
    State-of-art plasmonic photonic crystals based on self-assembled nanostructures / A. Yadav, N. Yadav, V. Agrawal [et al.] // J. Mater. Chem. C. - 2021. - Vol. 9, Is. 10. - P. 3368-3383, DOI 10.1039/d0tc05254j. - Cited References: 127. - All the authors acknowledge the respective department for providing facilities and resources. We acknowledge funding support from Taishan Scholar scheme of Shandong Province, China (ts 20190401). SPP and SVK acknowledge support of the Ministry of Science and Higher Education of Russian Federation, project no. FSRZ-2020-0008 . - ISSN 2050-7526. - ISSN 2050-7534
   Перевод заглавия: Плазмонные фотонные кристаллы на основе самоорганизующихся наноструктур: современное состояние проблемы
РУБ Materials Science, Multidisciplinary + Physics, Applied

Аннотация: Controlled self-assembly of plasmonic photonic nanostructures provides a cost-effective and efficient methodology to expand plasmonic photonic nano-platforms with unique, tunable, and coupled optical characteristics. Keeping advantages and challenges in view, this review highlights contemporary advancements towards the development of self-assembly of a plasmonic photonic nanostructure using a colloidal solution and a self-assembly modeling technique along with exploring novel optical properties and associated prospects. The potential applications of self-assembled plasmonic photonic nano-systems to investigate next-generation optoelectronic devices, the need to reduce and increase scaling up aspects, and improve the performance, are also covered briefly in the review. The need of considerable efforts for the design and development towards establishing novel cost-effective methods to fabricate controlled self-assembled smart nano-plasmonic platforms is also highlighted in this mini-review. Key confronting issues that precisely limit the self-assemblies of photonic nanostructures and desired integration with other device components, mainly including uniformity within miniaturized devices are also discussed. This review will serve as a guideline and platform to plan advanced research in developing self-assembled plasmonic photonic nano-systems to investigate smart functional optical devices.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Shandong Univ Technol, Ctr Adv Laser Mfg CALM, Zibo 255000, Peoples R China.
Southeast Univ, Sch Phys, Nanjing 211189, Peoples R China.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Bundelkhand Inst Engn & Technol, Dept Appl Sci, Jhansi, Uttar Pradesh, India.
Natl Univ Singapore, Nanosci & Nanotechnol Initiat, 10 Kent Ridge, Singapore 119260, Singapore.

Доп.точки доступа:
Yadav, A.; Yadav, N.; Agrawal, V.; Polyutov, S. P.; Tsipotan, A. S.; Karpov, S. V.; Карпов, Сергей Васильевич; Slabko, V. V.; Yadav, V. S.; Wu, Y. L.; Zheng, H. Y.; RamaKrishna, S.; Taishan Scholar scheme of Shandong Province, China [20190401]; Ministry of Science and Higher Education of Russian Federation [FSRZ-2020-0008]
}
Найти похожие
2.


   
    Plasmonic lattice Kerker effect in ultraviolet-visible spectral range / V. S. Gerasimov, A. E. Ershov, R. G. Bikbaev [et al.] // Phys. Rev. B. - 2021. - Vol. 103, Is. 3. - Ст. 035402, DOI 10.1103/PhysRevB.103.035402. - Cited References: 66. - The research was supported by the Ministry of Science and High Education of Russian Federation, Project No. FSRZ-2020-0008, by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-42-240003 and by the Russian Science Foundation (Project No. 18-13-00363) (numerical calculations of phase dependences and corresponding research), A. E. acknowledges the grant of the President of the Russian Federation, agreement No. 075–15–2019–676 . - ISSN 2469-9950
   Перевод заглавия: Эффект Керкера на плазмонной решетке в ультрафиолетовой и видимой области спектра
Кл.слова (ненормированные):
Aluminum -- Dielectric materials -- Geometry -- Nanostructures -- Plasmons -- Surface plasmon resonance
Аннотация: Mostly forsaken, but revived after the emergence of all-dielectric nanophotonics, the Kerker effect can be observed in a variety of nanostructures from high-index constituents with strong electric and magnetic Mie resonances. A necessary requirement for the existence of a magnetic response limits the use of generally nonmagnetic conventional plasmonic nanostructures for the Kerker effect. In spite of this, we demonstrate here the emergence of the lattice Kerker effect in regular plasmonic Al nanostructures. Collective lattice oscillations emerging from the delicate interplay between Rayleigh anomalies and localized surface plasmon resonances both of electric and magnetic dipoles, and electric and magnetic quadrupoles result in suppression of the backscattering in a broad spectral range. Variation of geometrical parameters of Al arrays allows for tailoring the lattice Kerker effect throughout UV and visible wavelength ranges, which is close to impossible to achieve using other plasmonic or all-dielectric materials. It is argued that our results set the ground for wide ramifications in the plasmonics and further application of the Kerker effect.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modelling of the Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Optics, University of Rochester, Rochester, NY 14627, United States

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A. E.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Rasskazov, I. L.; Isaev, I. L.; Semina, P. N.; Kostyukov, A. S.; Zakomirnyi, V. I.; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
3.


   
    Thermoelectric and Plasmonic Properties of Metal Nanoparticles Linked by Conductive Molecular Bridges / A. S. Fedorov, P. O. Krasnov, M. A. Visotin [et al.] // Phys. Status Solidi B. - 2020. - Vol. 257, Is. 12. - Ст. 2000249, DOI 10.1002/pssb.202000249. - Cited References: 53. - This study was supported by the Russian Science Foundation, project no. 16-13-00060 (thermoelectric properties), and by the Ministry of Science and High Education of the Russian Federation, project no. FSRZ-2020-0008 (plasmonic properties) . - ISSN 0370-1972. - ISSN 1521-3951
РУБ Physics, Condensed Matter
Рубрики:
POLYMERS
   ARRAYS

   RANGE

Кл.слова (ненормированные):
charge transfer plasmons -- density functional theory -- nanoparticles -- thermoelectric properties
Аннотация: Thermoelectric and plasmonic properties of systems comprising small golden nanoparticles (NPs) linked by narrow conductive polymer bridges are studied using the original hybrid quantum-classical model. The bridges are considered here to be either conjugated polyacetylene, polypyrrole, or polythiophene chain molecules terminated by thiol groups. The parameters required for the model are obtained using density functional theory and density functional tight-binding simulations. Charge-transfer plasmons in the considered dumbbell structures are found to possess frequency in the infrared region for all considered molecular linkers. The appearance of plasmon vibrations and the existence of charge flow through the conductive molecule, with manifestation of quantum properties, are confirmed using frequency-dependent polarizability calculations implemented in the coupled perturbed Kohn-Sham method. To study the thermoelectric properties of the 1D periodical systems, a universal equation for the Seebeck coefficient is derived. The phonon part of the thermal conductivity for the periodical -NP-S-C8H8- system is calculated by the classical molecular dynamics. The thermoelectric figure of meritZTis calculated by considering the electrical quantum conductivity of the systems in the ballistic regime. It is shown that forAu309nanoparticles connected by polyacetylene, polypyrrole, or polythiophene chains atT = 300 K, the ZTvalue is {0.08;0.45;0.40}, respectively.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
RAS, Kirensky Inst Phys, KSC, SB, Krasnoyarsk 660036, Russia.
Tomsk State Univ, Tomsk 634050, Russia.

Доп.точки доступа:
Fedorov, A. S.; Федоров, Александр Семенович; Krasnov, Pavel O.; Visotin, M. A.; Высотин, Максим Александрович; Tomilin, F. N.; Томилин, Феликс Николаевич; Polyutov, Sergey P.; Russian Science FoundationRussian Science Foundation (RSF) [16-13-00060]; Ministry of Science and High Education of the Russian Federation; FSRZ-2020-0008 (plasmonic properties)
}
Найти похожие
4.


   
    Substrate-mediated lattice Kerker effect in Al metasurfaces / A. S. Kostyukov, A. E. Ershov, R. G. Bikbaev [et al.] // J. Opt. Soc. Am. B. - 2021. - Vol. 38, Is. 9. - P. C78-C83, DOI 10.1364/JOSAB.427939. - Cited References: 62. - Funding. Russian Foundation for Basic Research, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science (20-42-240003); Ministry of Science and Higher Education of the Russian Federation (FSRZ-2020-0008) . - ISSN 0740-3224
Кл.слова (ненормированные):
Plasmonic nanoparticles -- Refractive index -- Half-space environment -- Non-homogeneous -- Regular array -- Sensing applications -- Surface lattice -- Theoretical treatments -- Two-dimensional arrays -- Wavelength ranges -- Geometry
Аннотация: Surface lattice resonances (SLRs) emerging in regular arrays of plasmonic nanoparticles (NPs) are known to be exceptionally sensitive to the homogeneity of the environment. It is considered necessary to have a homogeneous environment for engineering narrowband SLRs, while in a half-space environment, SLRs rapidly vanish as the contrast between the refractive indices of the substrate and superstrate increases. From this conventional wisdom, it is apparent that the delicate lattice Kerker effect emerging from SLRs and resonances on constituent NPs should be difficult to achieve in a non-homogeneous environment. Using a rigorous theoretical treatment with multipolar decomposition, we surprisingly find and explain a narrowband substrate-mediated lattice Kerker effect in two-dimensional arrays of Al nanocylinders in a half-space geometry. We propose to use this effect for sensing applications and demonstrate its broad tunability across the UV/Vis wavelength range.

Смотреть статью,
Scopus,
WOS
Держатели документа:
International Research Center of Spectroscopy and Quantum Chemistry-IRC SQC, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
The Institute of Optics, University of Rochester, Rochester, NY 14627, United States

Доп.точки доступа:
Kostyukov, A. S.; Ershov, A. E.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Gerasimov, V. S.; Rasskazov, I. L.; Karpov, S. V.; Карпов, Сергей Васильевич; Polyutov, S. P.
}
Найти похожие
5.


   
    Plasmonic enhancement of local fields in ultrafine metal nanoparticles / L. K. Sorensen, A. D. Utyushev, V. I. Zakomirnyi [et al.] // J. Phys. Chem. C. - 2021. - Vol. 125, Is. 5. - P. 13900-13908, DOI 10.1021/acs.jpcc.1c01424. - Cited References: 65. - The work was supported by the Russian Science Foundation (project no. 18-13-00363). L.K.S acknowledges the support of Carl Tryggers Stifetelse, project CTS 18-441 . - ISSN 1932-7447
Кл.слова (ненормированные):
Crystal structure -- Electric fields -- Electromagnetic fields -- Metal nanoparticles -- Plasmonics -- Discrete interaction -- External fields -- High symmetry -- Metallic nanoparticles -- Nanoscale particles -- Near field imaging -- Optical response -- Plasmon field -- Plasmonic nanoparticles
Аннотация: We present an analysis of ultrafine metallic nanoparticles (1-15 nm) with respect to electromagnetic field generation by plasmonic excitations. A number of structures with different symmetries and geometries are studied in order to analyze the distributions of plasmonically generated near-electric fields and the concentration of hot and cold spots around the particles. The study is made possible by the recent development of an extended discrete interaction model (Ex-DIM) where the explicit dependency of the plasmonic spectra on the structure and composition of particles in the range of 1-15 nm is accounted for. With the Ex-DIM, the optical response of the internal crystal structure of the nanoscale particles can be visualized, thereby making it possible to predict the dependence of the generated local fields with respect to the position of the particles relative to the external field polarization. The results indicate rather surprising concentrations of the plasmon fields in very confined hot spots also in cases when the particles retain a high symmetry. The consequence of the findings of this study when using small symmetric nanoparticles for near-field imaging is briefly discussed.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, SE-10691, Sweden
International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modelling, Federal Research Center Ksc Sb Ras, Krasnoyarsk, 660036, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center Ksc Sb Ras, Krasnoyarsk, 660036, Russian Federation
Federal Siberian Research Clinical Centre under Fmba of Russia, Krasnoyarsk, 660037, Russian Federation

Доп.точки доступа:
Sorensen, L. K.; Utyushev, A. D.; Zakomirnyi, V. I.; Gerasimov, V. S.; Ershov, A. E.; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Agren, H.
}
Найти похожие
6.


   
    Multipolar lattice resonances in plasmonic finite-size metasurfaces / A. S. Kostyukov, I. L. Rasskazov, V. S. Gerasimov [et al.] // Photonics. - 2021. - Vol. 8, Is. 4. - Ст. 109, DOI 10.3390/photonics8040109. - Cited References: 66. - The reported study was funded by the Russian Science Foundation project number 19-72-00066 . - ISSN 2304-6732
   Перевод заглавия: Мультипольные решеточные резонансы в плазмонных метаповерхностях конечных размеров
РУБ Optics

Кл.слова (ненормированные):
lattice resonance -- plasmonics -- multipoles -- nanoparticle
Аннотация: Collective lattice resonances in regular arrays of plasmonic nanoparticles have attracted much attention due to a large number of applications in optics and photonics. Most of the research in this field is concentrated on the electric dipolar lattice resonances, leaving higher-order multipolar lattice resonances in plasmonic nanostructures relatively unexplored. Just a few works report exceptionally high-Q multipolar lattice resonances in plasmonic arrays, but only with infinite extent (i.e., perfectly periodic). In this work, we comprehensively study multipolar collective lattice resonances both in finite and in infinite arrays of Au and Al plasmonic nanoparticles using a rigorous theoretical treatment. It is shown that multipolar lattice resonances in the relatively large (up to 6400 nanoparticles) finite arrays exhibit broader full width at half maximum (FWHM) compared to similar resonances in the infinite arrays. We argue that our results are of particular importance for the practical implementation of multipolar lattice resonances in different photonics applications.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Fed Univ, Int Res Ctr Spect & Quantum Chem IRC SQC, Krasnoyarsk 660041, Russia.
Univ Rochester, Inst Opt, Rochester, NY 14627 USA.
Russian Acad Sci, Siberian Branch, Inst Computat Modelling, Krasnoyarsk 660036, Russia.
Fed Res Ctr KSC SB RAS, LV Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kostyukov, Artem S.; Rasskazov, Ilia L.; Gerasimov, Valeriy S.; Polyutov, Sergey P.; Karpov, S. V.; Карпов, Сергей Васильевич; Ershov, Alexander E.; Russian Science FoundationRussian Science Foundation (RSF) [19-72-00066]
}
Найти похожие
7.


   
    Extended Discrete Interaction Model: Plasmonic Excitations of Silver Nanoparticles / V. I. Zakomirnyi [et al.] // J. Phys. Chem. C. - 2019. - Vol. 123, Is. 47. - P. 28867-28880, DOI 10.1021/acs.jpcc.9b07410. - Cited References: 64. - H.Å. and V.I.Z. acknowledge the support of the Russian Science Foundation (project no. 18-13-00363). L.K.S. acknowledges the support of Carl Tryggers Stifetelse, project no. CTS 18-441. . - ISSN 1932-7447
Кл.слова (ненормированные):
Aspect ratio -- Geometry -- Nanorods -- Optical properties -- Plasmonics -- Silver nanoparticles
Аннотация: We present a new atomistic model for plasmonic excitations and optical properties of metallic nanoparticles, which collectively describes their complete response in terms of fluctuating dipoles and charges that depend on the local environment and on the morphology of the composite nanoparticles. Being atomically dependent, the total optical properties, the complex polarizability, and the plasmonic excitation of a cluster refer to the detailed composition and geometric characteristics of the cluster, making it possible to explore the role of the material, alloy mixing, size, form shape, aspect ratios, and other geometric factors down to the atomic level and making it useful for the design of plasmonic particles with particular strength and field distribution. The model is parameterized from experimental data and, at present, practically implementable for particles up to more than 10 nm (for nanorods even more), thus covering a significant part of the gap between the scales where pure quantum calculations are possible and where pure classical models based on the bulk dielectric constant apply. We utilized the method to both spherical and cubical clusters along with nanorods where we demonstrate both the size, shape, and ratio dependence of plasmonic excitations and connect this to the geometry of the nanoparticles using the plasmon length.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, SE-10691, Sweden
Federal Siberian Research Clinical Centre under FMBA of Russia, Kolomenskaya 26, Krasnoyarsk, 660037, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Physics, Kaunas University of Technology, Kaunas, LT-51368, Lithuania
College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China

Доп.точки доступа:
Zakomirnyi, V. I.; Закомирный, Вадим Игоревич; Rinkevicius, Z.; Baryshnikov, G. V.; Sorensen, L. K.; Agren, H.
}
Найти похожие
8.


   
    Super-efficient laser hyperthermia of malignant cells with core-shell nanoparticles based on alternative plasmonic materials / A. S. Kostyukov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2019. - Vol. 236. - Ст. 106599, DOI 10.1016/j.jqsrt.2019.106599. - Cited References: 57. - The reported study was funded by the RF Ministry of Science and Higher Education , the State contract with Siberian Federal University for scientific research in 2017–2019 (Grant No. 3.8896.2017 ); Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No.18-42-243023); A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676 ). . - ISSN 0022-4073
Кл.слова (ненормированные):
Plasmonic photothermal therapy -- Conducting oxides -- Nanoparticle -- Nanoshell
Аннотация: New type of highly absorbing core-shell AZO/Au (aluminum doped zinc oxide/gold) and GZO/Au (gallium doped zinc oxide/gold) nanoparticles have been proposed for hyperthermia of malignant cells purposes. Comparative studies of pulsed laser hyperthermia were performed for Au nanoshells with AZO core and traditional SiO2 (quartz) core. We show that under the same conditions, the hyperthermia efficiency in the case of AZO increases by several orders of magnitude compared to SiO2 due to low heat capacity of AZO. Similar results have been obtained for GZO core which has same heat capacity. Calculations for pico-, nano- and sub-microsecond pulses demonstrate that reduced pulse duration results in strong spatial localization of overheated areas around nanoparticles, which ensures the absence of negative effects to the normal tissue. Moreover, we propose new alternative way for the optimization of hyperthermia efficiency: instead of maximizing the absorption of nanoparticles, we enhance the thermal damage effect on the membrane of malignant cell. This strategy allows to find the parameters of nanoparticle and the incident radiation for the most effective therapy.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal UniversityKrasnoyarsk, Russian Federation
Institute of Computational Modeling SB RASKrasnoyarsk, Russian Federation
Siberian State University of Science and TechnologyKrasnoyarsk, Russian Federation
The Institute of Optics, University of RochesterNY, United States
Kirensky Institute of Physics, Federal Research Center KSC SB RASKrasnoyarsk, Russian Federation

Доп.точки доступа:
Kostyukov, A. S.; Ershov, A. E.; Ершов, Александр Евгеньевич; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Filimonov, S. A.; Rasskazov, I. L.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
9.


   
    Engineering mode hybridization in regular arrays of plasmonic nanoparticles embedded in 1D photonic crystal / V. S. Gerasimov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2019. - Vol. 224. - P. 303-308, DOI 10.1016/j.jqsrt.2018.11.028. - Cited References: 49. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No.18-42-240013); by the RF Ministry of Science and Higher Education, the State contract with Siberian Federal University for scientific research in 2017–2019 (Grant No.3.8896.2017); by the Russian Science Foundation (Project No. 18-13-00363 ) (numerical calculations of Rayleigh anomalies in planar structures and corresponding research). . - ISSN 0022-4073
   Перевод заглавия: Управляемая гибридизация мод двумерной решетки внедренной в одномерный фотонный кристалл
Кл.слова (ненормированные):
Surface lattice resonance -- Photonic crystal -- Optical cavity
Аннотация: We analytically and numerically study coupling mechanisms between 1D photonic crystal (PhC) and 2D array of plasmonic nanoparticles (NPs) embedded in its defect layer. We introduce general formalism to explain and predict the emergence of PhC-mediated Wood–Rayleigh anomalies, which spectral positions agree well with the results of exact simulations with Finite-Difference Time-Domain (FDTD) method. Electromagnetic coupling between localized surface plasmon resonance (LSPR) and PhC-mediated Wood–Rayleigh anomalies makes it possible to efficiently tailor PhC modes. The understanding of coupling mechanisms in such hybrid system paves a way for optimal design of sensors, light absorbers, modulators and other types of modern photonic devices with controllable optical properties.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Federal Siberian Research Clinical Centre under FMBA of Russia, Krasnoyarsk, 660037, Russian Federation
Polytechnic Institute, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
The Institute of Optics, University of Rochester, Rochester, NY 14627, United States
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation

Доп.точки доступа:
Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Ершов, Александр Евгеньевич; Bikbaev, R. G.; Rasskazov, I. L.; Timofeev, I. V.; Тимофеев, Иван Владимирович; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
10.


   
    Collective resonances in hybrid photonic-plasmonic nanostructures / A. E. Ershov, R. G. Bikbaev, I. L. Rasskazov [et al.] // J. Phys.: Conf. Ser. - 2020. - Vol. 1461, Is. 1. - Ст. 012046DOI 10.1088/1742-6596/1461/1/012046. - Cited References: 11. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No. 18-42-240013); A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676)
Кл.слова (ненормированные):
Hybrid systems -- Plasmonics -- Time domain analysis -- 1-D photonic crystal -- Defect layers -- Nanodisks -- Periodic arrays -- Plasmonic nanostructures -- Rayleigh anomalies -- Spectral position -- Theoretical modeling -- Finite difference time domain method
Аннотация: We present the theoretical model to predict the spectral position of Rayleigh anomalies emerged in hybrid system consisting of periodic array of plasmonic nanodisks embeded into the middle of defect layer of 1D photonic crystal (PhC). The spectral positions of these new emerged Rayleigh anomalies agree well with the results of exact simulations with Finite-Difference Time-Domain (FDTD) method.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Optics, University of Rochester, Rochester, NY 14627, United States

Доп.точки доступа:
Ershov, A. E.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Rasskazov, I. L.; Gerasimov, V. S.; Timofeev, I. V.; Тимофеев, Иван Владимирович; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; International Conference on Metamaterials and Nanophotonics(4th ; 15 - 19 July 2019 ; St. Petersburg, Russian Federation)
}
Найти похожие
 1-10    11-20   21-30   31-40   41-49 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)