Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (2)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=plasmonics<.>)
Общее количество найденных документов : 26
Показаны документы с 1 по 10
 1-10    11-20   21-26 
1.


   
    Collective resonances in hybrid photonic-plasmonic nanostructures / A. E. Ershov, R. G. Bikbaev, I. L. Rasskazov [et al.] // J. Phys.: Conf. Ser. - 2020. - Vol. 1461, Is. 1. - Ст. 012046DOI 10.1088/1742-6596/1461/1/012046. - Cited References: 11. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No. 18-42-240013); A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676)
Кл.слова (ненормированные):
Hybrid systems -- Plasmonics -- Time domain analysis -- 1-D photonic crystal -- Defect layers -- Nanodisks -- Periodic arrays -- Plasmonic nanostructures -- Rayleigh anomalies -- Spectral position -- Theoretical modeling -- Finite difference time domain method
Аннотация: We present the theoretical model to predict the spectral position of Rayleigh anomalies emerged in hybrid system consisting of periodic array of plasmonic nanodisks embeded into the middle of defect layer of 1D photonic crystal (PhC). The spectral positions of these new emerged Rayleigh anomalies agree well with the results of exact simulations with Finite-Difference Time-Domain (FDTD) method.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Optics, University of Rochester, Rochester, NY 14627, United States

Доп.точки доступа:
Ershov, A. E.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Rasskazov, I. L.; Gerasimov, V. S.; Timofeev, I. V.; Тимофеев, Иван Владимирович; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; International Conference on Metamaterials and Nanophotonics(4th ; 15 - 19 July 2019 ; St. Petersburg, Russian Federation)
}
Найти похожие
2.


   
    Doping independent work function and stable band gap of spinel ferrites with tunable plasmonic and magnetic properties / N. Bhalla, S. Taneja, P. Thakur [et al.] // Nano Lett. - 2021. - Vol. 21, Is. 22. - P. 9780-9788, DOI 10.1021/acs.nanolett.1c03767. - Cited References: 41. - All authors would like to acknowledge support from EPSRC fund, award no. EP/R008841/1. Nikhil Bhalla wishes to thank Department of Economy, Northern Ireland, for supporting part of this work under GCRF Pump Priming Fund. Additionally, Atul Thakur and Preeti Thakur would like to acknowledge Gurujal, an initiative with district administration Gurugram for financial assistance from project no.176, Amity Incubation grant from the Ministry of Electronics and Information Technology (MeitY) under Technology Incubation and Development of Entrepreneurs (TIDE 2.0) program and the startup nanoLatticeX . - ISSN 1530-6984
Кл.слова (ненормированные):
plasmonics -- magnetic -- spinel -- ferrites -- atomic-doping -- MCD
Аннотация: Tuning optical or magnetic properties of nanoparticles, by addition of impurities, for specific applications is usually achieved at the cost of band gap and work function reduction. Additionally, conventional strategies to develop nanoparticles with a large band gap also encounter problems of phase separation and poor crystallinity at high alloying degree. Addressing the aforementioned trade-offs, here we report Ni–Zn nanoferrites with energy band gap (Eg) of ≈3.20 eV and a work function of ≈5.88 eV. While changes in the magnetoplasmonic properties of the Ni–Zn ferrite were successfully achieved with the incorporation of bismuth ions at different concentrations, there was no alteration of the band gap and work function in the developed Ni–Zn ferrite. This suggests that with the addition of minute impurities to ferrites, independent of their changes in the band gap and work function, one can tune their magnetic and optical properties, which is desired in a wide range of applications such as nanobiosensing, nanoparticle based catalysis, and renewable energy generation using nanotechnology.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ,
Читать в сети ИФ
Держатели документа:
Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, Jordanstown, BT37 0QB, United Kingdom
Healthcare Technology Hub, Ulster University, Shore Road, Jordanstown, BT37 0QB, United Kingdom
Department of Physics, Amity University Haryana, Haryana, Gurugram, 122413, India
Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
L.V. Kirensky Institute of Physics, Siberian Branch of RAS, Krasnoyarsk, 660036, Russian Federation
Amity Institute of Nanotechnology, Amity University Haryana, Haryana, Gurugram, 122413, India

Доп.точки доступа:
Bhalla, N.; Taneja, S.; Thakur, P.; Sharma, P. K.; Mariotti, D.; Maddi, C.; Ivanova, O. S.; Иванова, Оксана Станиславовна; Petrov, D. A.; Петров, Дмитрий Анатольевич; Sukhachev, A. L.; Сухачев, Александр Леонидович; Edelman, I. S.; Эдельман, Ирина Самсоновна; Thakur, A.
}
Найти похожие
3.


   
    Endorsing a hidden plasmonic mode for enhancement of LSPR sensing performance in evolved metal–insulator geometry using an unsupervised machine learning algorithm / N. Bhalla, A. Thakur, I. S. Edelman, R. D. Ivantsov // ACS Phys. Chem. Au. - 2022. - Vol. 2, Is. 6. - P. 459-467, DOI 10.1021/acsphyschemau.2c00033. - Cited References: 35 . - ISSN 2694-2445
   Перевод заглавия: Обнаружение скрытой плазмонной моды для усиления локального поверхностного плазмонного резонанса (ЛППР). Увеличение чувствительности усовершенствованной геометрии металл-изолятор с использованием самообучающегося машинного алгоритма
Дескрипторы: LSPR -- Plasmonics -- PCA -- Deconvolution -- Sensors
Аннотация: Large-area nanoplasmonic structures with pillared metal–insulator geometry, also called nanomushrooms (NM), consist of an active spherical-shaped plasmonic material such as gold as its cap and silicon dioxide as its stem. NM is a geometry which evolves from its precursor, nanoislands (NI) consisting of aforementioned spherical structures on flat silicon dioxide substrates, via selective physical or chemical etching of the silicon dioxide. The NM geometry is well-known to provide enhanced localized surface plasmon resonance (LSPR) sensitivity in biosensing applications as compared to NI. However, precise optical phenomenon behind this enhancement is unknown and often associated with the existence of electric fields in the large fraction of the spatial region between the pillars of NM, usually accessible by the biomolecules. Here, we uncover the association of LSPR enhancement in such geometries with a hidden plasmonic mode by conducting magneto-optics measurements and by deconvoluting the absorbance spectra obtained during the local refractive index change of the NM and NI geometries. By the virtue of principal component analysis, an unsupervised machine learning technique, we observe an explicit relationship between the deconvoluted modes of LSPR, the differential absorption of left and right circular polarized light, and the refractive index sensitivity of the LSPR sensor. Our findings may lead to the development of new approaches to extract unknown properties of plasmonic materials or establish new fundamental relationships between less understood photonic properties of nanomaterials.

https://doi.org/10.1021/acsphyschemau.2c00033
Держатели документа:
Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown, Shore Road, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom
Healthcare Technology Hub, Ulster University, Jordanstown, Shore Road, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom
Amity Institute of Nanotechnology, Amity University Haryana, Gurugram, Haryana 122413, India
Kirensky Institute of Physics, FRC KSC Siberian Branch of Russian Academy of Sciences, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Bhalla, Nikhil; Thakur, Atul; Edelman, I. S.; Эдельман, Ирина Самсоновна; Ivantsov, R. D.; Иванцов, Руслан Дмитриевич
}
Найти похожие
4.


   
    Enhancing coherent nonlinear-optical processes in nonmagnetic backward-wave materials / A. K. Popov [и др.] // The 3th International Conference on Metamaterials, Photonic Crystals and Plasmonics (META’12) : Proceedings. - 2012. - P. 66
Аннотация: Novel concepts of nonlinear-optical (NLO) photonic metamaterials (MMs) are proposed. They concern with greatly enhanced coherent NLO energy exchange between ordinary and backward waves (BWs) through the frequency-conversion processes. Two different classes of materials which support BWs are considered: crystals that support optical phonons with negative group velocity and MMs with specially engineered spatial dispersion. The possibility to replace plasmonic NLO MMs enabling magnetic response at optical frequencies, which are very challenging to engineer, by the ordinary readily available crystals, are discussed. The possibility to mimic extraordinary NLO frequency-conversion propagation processes attributed to negative-index MMs (NIMs) is shown in some of such crystals, if optical phonons with negative group velocity and a proper phase-matching geometry are implemented. Here, optical phonons are used as one of the coupled counterparts instead of backward electromagnetic waves (BEMWs). The appearance of BEMWs in metaslabs made of carbon nanotubes, the possibilities and extraordinary properties of BW second harmonic generation in such MMs is another option of nonmagnetic NIMs, which is described too. Among the applications of the proposed photonic materials is the possibility of creation of a family of unique BW photonic devices such as frequency doubling metamirror and Raman amplifiers with greatly improved efficiency.

Материалы конференции

Доп.точки доступа:
Popov, A. K.; Попов, Александр Кузьмич; Shalaev, M. I.; Myslivets, S. A.; Мысливец, Сергей Александрович; Slabko, V. V.; Слабко, Виталий Васильевич; Nefedov, I. S.; International conference on metamaterials, photonic crystals and plasmonics(3 ; 2012 ; 19-22 apr ; Paris, France)
}
Найти похожие
5.


   
    Enhancing coherent nonlinear-optical processes in nonmagnetic backward-wave materials / A. K. Popov [et al.] // Appl. Phys. A. - 2012. - Vol. 109, Is. 4. - P. 835-840, DOI 10.1007/s00339-012-7390-8. - Cited References: 35. - This work was supported in part by the U.S. National Science Foundation under Grant No. ECCS-1028353, by the US Air Force Office of Scientific Research under Grant No. FA9550-12-1-298; by the Presidium of the Russian Academy of Sciences under Project No. 24.31, by the Ministry of Science under Federal Research Program No. 14.V37.21.0730 and by the Siberian Division of the Russian Academy of Sciences and Siberian Federal University under Integration Project No. 101; and by the Academy of Finland and Nokia through the Center-of-Excellence program. . - ISSN 0947-8396
Рубрики:
NEGATIVE-INDEX METAMATERIALS
   LEFT-HANDED METAMATERIALS

   2ND-HARMONIC GENERATION

   PARAMETRIC AMPLIFICATION

   COMPENSATING LOSSES

   OSCILLATOR

Аннотация: Novel concepts of nonlinear-optical (NLO) photonic metamaterials (MMs) are proposed. They concern with greatly enhanced coherent NLO energy exchange between ordinary and backward waves (BWs) through the frequency-conversion processes. Two different classes of materials which support BWs are considered: crystals that support optical phonons with negative group velocity and MMs with specially engineered spatial dispersion. The possibility to replace plasmonic NLO MMs enabling magnetic response at optical frequencies, which are very challenging to engineer, by the ordinary readily available crystals, are discussed. The possibility to mimic extraordinary NLO frequency-conversion propagation processes attributed to negative-index MMs (NIMs) is shown in some of such crystals, if optical phonons with negative group velocity and a proper phase-matching geometry are implemented. Here, optical phonons are used as one of the coupled counterparts instead of backward electromagnetic waves (BEMWs). The appearance of BEMWs in metaslabs made of carbon nanotubes, the possibilities and extraordinary properties of BW second harmonic generation in such MMs is another option of nonmagnetic NIMs, which is described too. Among the applications of the proposed photonic materials is the possibility of creation of a family of unique BW photonic devices such as frequency doubling metamirror and Raman amplifiers with greatly improved efficiency.

Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ

Доп.точки доступа:
Popov, A. K.; Shalaev, M. I.; Myslivets, S. A.; Мысливец, Сергей Александрович; Slabko, V. V.; Слабко, Виталий Васильевич; Nefedov, I. S.; International conference on metamaterials, photonic crystals and plasmonics(3 ; 2012 ; 19-22 apr ; Paris, France)
}
Найти похожие
6.


   
    Experimental observation of bound state in the continuum in 1D chain of dielectric disks at GHz / M. Balyzin [et al.] // The 9th International Conference on Metamaterials, Photonic Crystals and Plasmonics (META’18) : Program / spec. sess. org. A. F. Sadreev [et al.]. - 2018. - Session 4A10: Fano Resonances in Optics and Microwaves: Physics and Application III. - P. 79. - см. также Session 3A3 Fano Resonances in Optics and Microwaves: Physics and Application I
Аннотация: In this work we experimentally observe a symmetry protected optical bound state in the continuum(BIC) with zero angular momentum in 1D array of ceramic disks at GHz frequencies. We analyze the dependence of Q factor of BIC on the number of the disks and the level of the material losses. We confirmed theoretical prediction about quadratic growth of the Q factor with the number of the disks and its following saturation due to material losses.
Материалы конференции публикуются в журналах: Nanophotonics, Applied Physics A, Optical Materials Express, Advanced Electromagnetics

Материалы конференции,
Материалы конференции

Доп.точки доступа:
Sadreev, A. F. \spec. sess. org.\; Садреев, Алмаз Фаттахович; Balyzin, M.; Sadrieva, Z.; Belyakov, M. A.; Kapitanova, P.; Sadreev, A. F.; Bogdanov, A.; International Conference on Metamaterials, Photonic Crystals and Plasmonics(9 ; 2018 ; June 24 - July 1 ; Marseille, France)
}
Найти похожие
7.


   
    Extended Discrete Interaction Model: Plasmonic Excitations of Silver Nanoparticles / V. I. Zakomirnyi [et al.] // J. Phys. Chem. C. - 2019. - Vol. 123, Is. 47. - P. 28867-28880, DOI 10.1021/acs.jpcc.9b07410. - Cited References: 64. - H.Å. and V.I.Z. acknowledge the support of the Russian Science Foundation (project no. 18-13-00363). L.K.S. acknowledges the support of Carl Tryggers Stifetelse, project no. CTS 18-441. . - ISSN 1932-7447
Кл.слова (ненормированные):
Aspect ratio -- Geometry -- Nanorods -- Optical properties -- Plasmonics -- Silver nanoparticles
Аннотация: We present a new atomistic model for plasmonic excitations and optical properties of metallic nanoparticles, which collectively describes their complete response in terms of fluctuating dipoles and charges that depend on the local environment and on the morphology of the composite nanoparticles. Being atomically dependent, the total optical properties, the complex polarizability, and the plasmonic excitation of a cluster refer to the detailed composition and geometric characteristics of the cluster, making it possible to explore the role of the material, alloy mixing, size, form shape, aspect ratios, and other geometric factors down to the atomic level and making it useful for the design of plasmonic particles with particular strength and field distribution. The model is parameterized from experimental data and, at present, practically implementable for particles up to more than 10 nm (for nanorods even more), thus covering a significant part of the gap between the scales where pure quantum calculations are possible and where pure classical models based on the bulk dielectric constant apply. We utilized the method to both spherical and cubical clusters along with nanorods where we demonstrate both the size, shape, and ratio dependence of plasmonic excitations and connect this to the geometry of the nanoparticles using the plasmon length.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, SE-10691, Sweden
Federal Siberian Research Clinical Centre under FMBA of Russia, Kolomenskaya 26, Krasnoyarsk, 660037, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Physics, Kaunas University of Technology, Kaunas, LT-51368, Lithuania
College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China

Доп.точки доступа:
Zakomirnyi, V. I.; Закомирный, Вадим Игоревич; Rinkevicius, Z.; Baryshnikov, G. V.; Sorensen, L. K.; Agren, H.
}
Найти похожие
8.


    Bulgakov, E. N.
    Guiding electromagnetic waves through the bound states in the radiation continuum in novel types / E. N. Bulgakov, A. F. Sadreev // The 9th International Conference on Metamaterials, Photonic Crystals and Plasmonics (META’18) : Program / spec. sess. org. A. F. Sadreev [et al.]. - 2018. - Session 4A10: Fano Resonances in Optics and Microwaves: Physics and Application III. - P. 78. - Материалы конференции публикуются в журналах: Nanophotonics, Applied Physics A, Optical Materials Express, Advanced Electromagnetics

Материалы конференции,
Материалы конференции

Доп.точки доступа:
Sadreev, A. F. \spec. sess. org.\; Садреев, Алмаз Фаттахович; Sadreev, A. F.; International Conference on Metamaterials, Photonic Crystals and Plasmonics(9 ; 2018 ; June 24 - July 1 ; Marseille, France)
}
Найти похожие
9.


   
    Mode coupling in arrays of Al nanoparticles [Preprint] / A. E. Ershov, V. S. Gerasimov, R. G. Bikbaev [et al.]. - Electronic text data // ArXiv. - 2020. - Ст. 1912.12830. - Cited References: 78. - The reported study was funded by the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No.18-42-240013); A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676)
Кл.слова (ненормированные):
plasmonics -- aluminum -- surface lattice resonances
Аннотация: The mechanisms of coupling between the lattice modes of a two-dimensional (2D) array consisting of Al nanoparticles and the localized modes of individual Al nanoparticles have been studied in detail. The results have been obtained employing the finite time difference method (FDTD) and the generalized Mie theory. It was shown that interactions of single particles with 2D lattice modes significantly change the extinction spectra depending on the particle radius and the lattice period. The Rayleigh anomalies of higher orders contribute to formation of hybrid modes resulting in increase of the extinction efficiency in short wavelength range of the spectrum. The patterns of spatial electromagnetic field distribution at the frequencies of hybrid modes have been studied. We note that comprehensive understanding the mode coupling mechanisms in arrays paves the way for engineering different types of modern photonic devices with controllable optical properties.

Смотреть статью,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk 660036, Russia
Siberian Federal University, Krasnoyarsk, 660041, Russia
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia
Siberian State University of Science and Technology, 660014, Krasnoyarsk, Russia

Доп.точки доступа:
Ershov, A. E.; Gerasimov, V. S.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Polyutov, S. P.; Полютов, Сергей Петрович; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
10.


   
    Mode coupling in arrays of Al nanoparticles / A. E. Ershov, V. S. Gerasimov, R. G. Bikbaev [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2020. - Vol. 248. - Ст. 106961, DOI 10.1016/j.jqsrt.2020.106961. - Cited References: 81. - The reported study was funded by the grant of the President of Russian Federation (agreement 075-15-2019-676 ); the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No.18-42-240013); the State contract with Siberian Federal University for scientific research; Russian Science Foundation project number 19-72-00066 (investigation of finite size effects) . - ISSN 0022-4073
Кл.слова (ненормированные):
Plasmonics -- Aluminum -- Surface lattice resonances
Аннотация: The mechanisms of coupling between the lattice modes of a two-dimensional (2D) array consisting of Al nanoparticles and the localized modes of individual Al nanoparticles have been studied in detail. The results were obtained employing the finite-difference time-domain method (FDTD) and the generalized Mie theory. It was shown that interactions of single particles with 2D lattice modes significantly change the extinction spectra depending on the particle radius and the lattice period. The Rayleigh anomalies of higher orders contribute to formation of hybrid modes resulting in increase of the extinction efficiency in short wavelength range of the spectrum. It was shown that high intensity magnetic modes are excited in aluminum nanoparticles arrays. The patterns of spatial electromagnetic field distribution at the frequencies of hybrid modes have been studied. We note that comprehensive understanding the mode coupling mechanisms in arrays paves the way for engineering different types of modern photonic devices with controllable optical properties.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation

Доп.точки доступа:
Ershov, A. E.; Gerasimov, V. S.; Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
 1-10    11-20   21-26 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)