Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>S=WIRES<.>)
Общее количество найденных документов : 8
Показаны документы с 1 по 8
1.


   
    Quantum dots embedded into silicon nanowires effectively partition electron confinement / P. V. Avramov [et al.] // J. Appl. Phys. - 2008. - Vol. 104, Is. 5. - Ст. 54305, DOI 10.1063/1.2973464. - Cited References: 22. - This work was, in part, partially supported by a Core Research for Evolutional Science and Technology (CREST) grant in the area of high performance computing for multi-scale and multiphysics phenomena from the Japan Science and Technology Agency (JST) as well as by the Russian Fund of Basic Researches (Grant No. 05-02-17443) (L.A.C.). One of the authors (P.V.A.) acknowledges the encouragement of Dr. Keiji Morokuma, Research Leader at Fukui Institute. The geometry of all presented structures was visualized by ChemCraft software. SUP23/SUP L.A.C. acknowledges I. V. Stankevich for help and fruitful discussions. P.B.S. is grateful to the Joint Supercomputer Center of the Russian Academy of Sciences for access to a cluster computer for quantum-chemical calculations. . - ISSN 0021-8979
РУБ Physics, Applied
Рубрики:
OPTICAL-PROPERTIES
   POROUS SILICON

   WIRES

   PREDICTION

   GROWTH

Кл.слова (ненормированные):
Electric currents -- Electric wire -- Electronic states -- Electronic structure -- Nanostructured materials -- Nanostructures -- Nanowires -- Nonmetals -- Optical waveguides -- Plasma confinement -- Quantum confinement -- Quantum electronics -- Semiconducting silicon compounds -- Silicon -- electronic state -- Band gaps -- Electron confinements -- Electronic-structure calculations -- Embedded structures -- Quantum confinement effect -- Quantum dots -- Semi-empirical methods -- Silicon nanowires -- Silicon quantum dots -- Semiconductor quantum dots
Аннотация: Motivated by the experimental discovery of branched silicon nanowires, we performed theoretical electronic structure calculations of icosahedral silicon quantum dots embedded into pentagonal silicon nanowires. Using the semiempirical method, we studied the quantum confinement effect in the fully optimized embedded structures. It was found that (a) the band gaps of the embedded structures are closely related to the linear sizes of the longest constituting part rather than to the total linear dimension and (b) the discovered atypical quantum confinement with a plateau and a maximum can be attributed to the substantial interactions of near Fermi level electronic states of the quantum dots and nanowire segments. (c) 2008 American Institute of Physics.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Avramov, Pavel V.] Kyoto Univ, Fukui Inst Fundamental Chem, Kyoto 6068103, Japan
[Fedorov, Dmitri G.] Natl Inst Adv Ind Sci & Technol, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan
[Sorokin, Pavel B.
Ovchinnikov, Sergei G.] LV Kirensky Inst Phys SB RAS, Krasnoyarsk 660036, Russia
[Sorokin, Pavel B.
Ovchinnikov, Sergei G.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Sorokin, Pavel B.
Chernozatonskii, Leonid A.] RAS, NM Emanuel Inst Biochem Phys, Moscow 119334, Russia
ИФ СО РАН
Fukui Institute for Fundamental Chemistry, Kyoto University, 34-3 Takano Nishihiraki, Sakyo, Kyoto 606-8103, Japan
Research Institute for Computational Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8568, Japan
L.V. Kirensky Institute of Physics, SB, RAS, 660036 Krasnoyarsk, Russian Federation
Siberian Federal University, 79 Svobodny Av., 660041 Krasnoyarsk, Russian Federation
N.M. Emanuel Institute of Biochemical Physics, RAS, 119334 Moscow, Russian Federation

Доп.точки доступа:
Avramov, P. V.; Аврамов, Павел Вениаминович; Fedorov, D. G.; Sorokin, P. B.; Chernozatonskii, L. A.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич
}
Найти похожие
2.


    Sadreev, A. F.
    Electron transmission through an ac biased quantum point contact / A. F. Sadreev, K. . Davlet-Kildeev // Phys. Rev. B. - 2007. - Vol. 75, Is. 23. - Ст. 235309, DOI 10.1103/PhysRevB.75.235309. - Cited References: 41 . - ISSN 1098-0121
РУБ Physics, Condensed Matter
Рубрики:
MULTIPROBE CONDUCTORS
   BALLISTIC TRANSPORT

   WIRES

   GAS

   CONSTRICTION

   SCATTERING

   TIME

   QUANTIZATION

   OSCILLATIONS

   RESISTANCE

Аннотация: We consider a transmission through the potential relief created by a split gate constriction (quantum point contact). Simultaneously, dc and ac voltages V-up(t)=V-0+V-1 cos omega t and V-dw(t)=V-0+V-1 cos(omega t+theta) are applied to the gates. We show numerically that the in-phase ac voltages (theta=0) smear the conductance steps of the stationary conductance, while the antiphase ac voltages (theta=pi) only shift the conductance steps. Moreover, computation of currents in probing wires connected cross to the time-periodic quantum point contact reveals a net current for theta not equal 0,pi. This implies that the Schrodinger equation described by the electron transport under the effect of the time-periodic long electrodes is equivalent to the transmission in the crossed effective magnetic and electric fields, where the in-plane magnetic field b similar to theta is directed along the transport axis and the electric field e similar to omega is directed perpendicular to the plane of electron transport. Then the vector exb gives rise to the galvanomagnetic current directed cross to the electron transport.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Phys, Krasnoyarsk 660036, Russia
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
ИФ СО РАН
Institute of Physics, Academy of Sciences, 660036 Krasnoyarsk, Russian Federation
Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden

Доп.точки доступа:
Davlet-Kildeev, K.; Садреев, Алмаз Фаттахович
}
Найти похожие
3.


    Starikov, A. A.
    Scenario for the 0.7-conductance anomaly in quantum point contacts / A. A. Starikov, I. I. Yakimenko, K. F. Berggren // Phys. Rev. B. - 2003. - Vol. 67, Is. 23. - Ст. 235319, DOI 10.1103/PhysRevB.67.235319. - Cited References: 23 . - ISSN 1098-0121
РУБ Physics, Condensed Matter
Рубрики:
2-DIMENSIONAL ELECTRON-GAS
   SPIN POLARIZATION

   CONDUCTANCE

   WIRES

   STATE

Аннотация: Effects of spontaneous spin polarization in quantum point contacts (QPC's) are investigated for a realistic semiconductor device structure using the Kohn-Sham local spin-density formalism. At maximal polarization in the contact area, there is a bifurcation into ground-state and metastable solutions. The conduction associated with the metastability is lower than for the normal state. With increasing temperature, the conductance should therefore show an anomalous behavior as observed. For the present device we do not recover resonance or quasibound states.

WOS,
Читать в сети ИФ
Держатели документа:
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
ИФ СО РАН

Доп.точки доступа:
Yakimenko, I. I.; Berggren, K. F.
}
Найти похожие
4.


   
    Multiple bound states in scissor-shaped waveguides / E. N. Bulgakov [et al.] // Phys. Rev. B. - 2002. - Vol. 66, Is. 15. - Ст. 155109, DOI 10.1103/PhysRevB.66.155109. - Cited References: 32 . - ISSN 1098-0121
РУБ Physics, Condensed Matter
Рубрики:
QUANTUM WAVE-GUIDES
   HELMHOLTZ EQUATION

   RADIATION-FIELD

   HALL RESISTANCE

   RESONANCES

   WIRES

   PROPAGATION

   MODES

Аннотация: We study bound states of the two-dimensional Helmholtz equations with Dirichlet boundary conditions in an open geometry given by two straight leads of the same width which cross at an angle theta. Such a four-terminal junction with a tunable theta can realized experimentally if a right-angle structure is filled by a ferrite. It is known that for theta=90degrees there is one proper bound state and one eigenvalue embedded in the continuum. We show that the number of eigenvalues becomes larger with increasing asymmetry and the bound-state energies are increasing as functions of theta in the interval (0,90degrees). Moreover, states which are sufficiently strongly bound exist in pairs with a small energy difference and opposite parities. Finally, we discuss how the bound states transform with increasing theta into quasibound states with a complex wave vector.

WOS,
Читать в сети ИФ
Держатели документа:
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
Acad Sci Czech Republ, Inst Nucl Phys, CZ-25068 Rez, Czech Republic
Czech Tech Univ, Doppler Inst, Prague 11519, Czech Republic
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
ИФ СО РАН

Доп.точки доступа:
Bulgakov, E. N.; Булгаков, Евгений Николаевич; Exner, P.; Pichugin, K. N.; Пичугин, Константин Николаевич; Sadreev, A. F.; Садреев, Алмаз Фаттахович
}
Найти похожие
5.


    Bulgakov, E. N.
    Mixing of bound states with electron transport by a radiation field in waveguides / E. N. Bulgakov, A. F. Sadreev // J. Exp. Theor. Phys. - 1998. - Vol. 87, Is. 6. - P. 1058-1067, DOI 10.1134/1.558621. - Cited References: 27 . - ISSN 1063-7761
РУБ Physics, Multidisciplinary
Рубрики:
CLASSICALLY UNBOUND SYSTEM
   HALL RESISTANCE ANOMALIES

   QUANTUM WAVE-GUIDES

   POINT CONTACTS

   WIRES

   TIME

   CONDUCTANCE

Аннотация: Electron transmission in the two-, three-, and four-terminal nanostructures is considered under the influence of a radiation field. The frequency of the radiation field is tuned to the transition between the energy of a bound state and the Fermi energy of the incident electrons. The radiation induced resonant peaks and dips of the electron transport are exhibited for zero and low magnetic fields. It is shown that rotation of the radiation field polarization can effectively control the electron transport into different electrodes attached to the structures because of the symmetry of the structures. The resonant anomalies of the Hall resistance are found in a weak magnetic field. (C) 1998 American Institute of Physics. [S1063-7761(98)00412-0].

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
Abo Akad Univ, Inst Fys, Dept Phys, SF-20500 Abo, Finland
ИФ СО РАН

Доп.точки доступа:
Sadreev, A. F.; Садреев, Алмаз Фаттахович; Булгаков, Евгений Николаевич
}
Найти похожие
6.


    Pichugin, K. N.
    Aharanov-Bohm oscillations of conductance in two-dimensional rings / K. N. Pichugin, A. F. Sadreev // Phys. Rev. B. - 1997. - Vol. 56, Is. 15. - P. 9662-9673, DOI 10.1103/PhysRevB.56.9662. - Cited References: 56 . - ISSN 0163-1829
РУБ Physics, Condensed Matter
Рубрики:
NORMAL-METAL RINGS
   HALF FLUX QUANTA

   MESOSCOPIC RING

   MAGNETIC-FIELD

   CIRCULAR BENDS

   EDGE STATES

   MAGNETOTRANSPORT

   TRANSPORT

   WIRES

   TRANSITION

Аннотация: Transport properties of mesoscopic rings with applied external magnetic field are considered numerically. Rings have square and circular forms and a finite aspect ratio d/L where L is the ring size and d is the width of ring arms. The type of the Aharonov-Bohm oscillations (ABO's) of the transmission substantially depends on the number of channels participating in the electron transmission. Moreover the aspect ratio and the geometrical form of the ring are important for the ABO's. In square rings with a small aspect ratio (d/L = 1/10) the transmission displays periodic ABO's in the region of applied magnetic field defined by the inequality infinity l(B) = ((h) over bar c/eB)(1/2)greater than or equal to d, while for rings with a large aspect ratio (d/L = 1/3) only the single-channel transmission has quasiperiodical ABO's. For the circular rings with small aspect ratios the quasiperiodic ABO's are observed all over the region of the applied magnetic field while for the rings with moderate aspect ratios only the multichannel transmission displays irregular ABO's. The probability current flow patterns demonstrate fine correspondence between the transmission and the vortex structure of current distributions in the rings. For single-channel transmission, electron currents are laminar. For multichannel transport, current flow patterns display a complicated convection pattern in the form of a vortex lattice. An elementary cell of the vortex lattice consists of a few vortices and antivortices and has a size of similar to d/f, where f is the number of channels of electron transmission in the ring. Application of the flux distorts the vortex lattice enormously, partially destroying it. Correspondingly the Aharonov-Bohm oscillations of the transmission become irregular.

WOS
Держатели документа:
LV KIRENSKII INST PHYS,KRASNOYARSK 660036,RUSSIA
KRASNOYARSK STATE UNIV,ABO ACAD,INST FYZ,DEPT PHYS,KRASNOYARSK 660062,RUSSIA
ИФ СО РАН

Доп.точки доступа:
Sadreev, A. F.; Садреев, Алмаз Фаттахович; Пичугин, Константин Николаевич
}
Найти похожие
7.


    Pichugin, K. N.
    Irregular Aharonov-Bohm oscillations in finite width rings / K. N. Pichugin, A. F. Sadreev // Zhurnal Eksperimentalnoi Teor. Fiz. - 1996. - Vol. 109, Is. 2. - P. 546-561. - Cited References: 47 . - ISSN 0044-4510
РУБ Physics, Multidisciplinary
Рубрики:
HALF FLUX QUANTA
   EDGE STATES

   MAGNETIC-FIELD

   CIRCULAR BENDS

   WIRES

   TRANSPORT

   MAGNETOTRANSPORT

   RESISTANCE

   FLUCTUATIONS

   CONDUCTANCE


WOS

Доп.точки доступа:
Sadreev, A. F.
}
Найти похожие
8.


   
    Atypical quantum confinement effect in silicon nanowires / P. B. Sorokin [et al.] // J. Phys. Chem. A. - 2008. - Vol. 112, Is. 40. - P9955-9964, DOI 10.1021/jp805069b. - Cited Reference Count: 25. - Гранты: This work was in part partially supported by a CREST (Core Research for Evolutional Science and Technology) grant in the Area of High Performance Computing for Multiscale and Multiphysics Phenomena from the Japan Science and Technology Agency (JST) as well as by Russian Fund of Basic Researches (grant 08-02-01096) (L.A.C.). P.V.A. acknowledges the encouragement of Dr. Keiji Morokuma, Research Leader at Fukui Institute for Fundamental Chemistry. The geometry of all presented structures was visualized by ChemCraft software.SUP25/SUP L.A.C. acknowledges I. V. Stankevich for help and fruitful discussions. P.B.S. is grateful to the Joint Supercomputer Center of the Russian Academy of Sciences for access to a cluster computer for quantum-chemical calculations. - Финансирующая организация: Japan Science and Technology Agency (JST); Russian Fund of Basic Researches [08-02-01096] . - OCT 9. - ISSN 1089-5639
Рубрики:
ELECTRONIC-STRUCTURE
   OPTICAL-PROPERTIES

   SI

   DENSITY

   WIRES

   EXCHANGE

   ATOMS

   DOTS

Кл.слова (ненормированные):
Electric wire -- Energy gap -- Gallium alloys -- Mathematical models -- Nanostructured materials -- Nanostructures -- Nanowires -- Quantum confinement -- Quantum electronics -- Semiconductor quantum dots -- Silicon -- Ami methods -- Band gaps -- Blue shifts -- Dinger equations -- Linear junctions -- Monotonic decreases -- Quantum confinement effects -- Quantum dots -- Semiempirical -- Silicon nanowires -- System sizes -- Theoretical models -- Nanocrystalline silicon -- nanowire -- quantum dot -- silicon -- article -- chemistry -- electron -- quantum theory -- Electrons -- Nanowires -- Quantum Dots -- Quantum Theory -- Silicon
Аннотация: The quantum confinement effect (QCE) of linear junctions of silicon icosahedral quantum dots (IQD) and pentagonal nanowires (PNW) was studied using DFT and semiempirical AM1 methods. The formation of complex IQD/PNW structures leads to the localization of the HOMO and LUMO on different parts of the system and to a pronounced blue shift of the band gap; the typical QCE with a monotonic decrease of the band gap upon the system size breaks down. A simple one-electron one-dimensional Schrodinger equation model is proposed for the description and explanation of the unconventional quantum confinement behavior of silicon IQD/PNW systems. On the basis of the theoretical models, the experimentally discovered deviations from the typical QCE for nanocrystalline silicon are explained.

WOS,
Scopus,
eLibrary
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia
LV Kirenskii Inst Phys, SB RAS, Krasnoyarsk 660036, Russia
RAS, N M Emanuel Inst Biochem Phys, Moscow 119334, Russia
Kyoto Univ, Fukui Inst Fundamental Chem, Kyoto 6068103, Japan
Natl Inst Adv Ind Sci & Technol, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan

Доп.точки доступа:
Sorokin, P. B.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Avramov, P. V.; Chernozatonskii, L.A.; Fedorov, D.G.
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)