Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Waveguides<.>)
Общее количество найденных документов : 33
Показаны документы с 1 по 20
1.


    Рассказов, Илья Леонидович.
    Transmission and spectral properties of short optical plasmon waveguides / I. L. Rasskazov, V. A. Markel, S. V. Karpov // Opt. Spectrosc. - 2013. - Vol. 115, Is. 5. - P. 666-674, DOI 10.1134/S0030400X13110180 . - ISSN 0030-400X
Аннотация: We study the spectral and transmission properties of optical waveguides in the form of different chain configurations of spherical Ag nanoparticles that can be synthesized under conditions of selective deposition on a dielectric substrate from a nanocolloid. В© 2013 Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Siberian Branch, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
Univ Penn, Philadelphia, PA 19104 USA
Siberian Fed Univ, Krasnoyarsk 660028, Russia

Доп.точки доступа:
Markel, V. A.; Karpov, S. V.; Карпов, Сергей Васильевич; Rasskazov, I. L.
}
Найти похожие
2.


    Рассказов, Илья Леонидович.
    Optical properties of the waveguides in the form of various configurations of arrays of nanoparticles, synthesized on the lectrostatical functionalized substrate / I. L. Rasskazov, I. V. Alecseenko, S. V. Karpov // Молодежь и наука [Электронный ресурс] : сборник материалов VIII Всероссийской научно-технической конференции студентов, аспирантов и молодых ученых, посвященной 155-летию со дня рождения К.Э.Циолковского. - Красноярск : СФУ, 2012

Материалы конференции

Доп.точки доступа:
Alecseenko, I. V.; Алексеенко И.В.; Karpov, S. V.; Карпов, Сергей Васильевич; Rasskazov, I. L.; Всероссийская научно-техническая конференция студентов, аспирантов и молодых ученых, посвященной 155-летию со дня рождения К.Э. Циолковского (8 ; 2012 ; апр. ; 19-27 ; Красноярск)
}
Найти похожие
3.
Описание изобретения к патенту 2791426

   
    Разъемное соединение объединенных коаксиального и круглого волноводов / К. В. Лемберг, Н. М. Боев, Д. А. Шабанов [и др.]. - № 2022129972 ; Заявл. 18.11.2022 ; Опубл. 07.03.2023 // Изобретения. Полезные модели : офиц. бюл. Фед. службы по интеллектуал. собственности (Роспатент). - 2023. - № 19
   Перевод заглавия: Detachable connection of combined coaxial and circular waveguides
Аннотация: Изобретение относится к технике сверхвысоких частот и предназначено для соединения объединенных коаксиального и круглого волноводов, используемых в облучателях двухзеркальных антенн. Разъемное соединение объединенных коаксиального и круглого волноводов содержит две соосные проводящие трубки разного диаметра. Внутренняя трубка одновременно является круглым волноводом и проводником коаксиального волновода, а внешняя трубка является экраном коаксиального волновода. В месте разъемного соединения внутренняя проводящая трубка напрямую стыкуется с круглым волноводом, внутрь коаксиального волновода вставлен цилиндр со скосом под углом 45°, причем напротив скоса цилиндра во внешней проводящей трубке расположено окно прямоугольного волновода. Технический результат - возможность жесткого крепления внутренней трубки совмещенного коаксиально круглого волновода при одновременном обеспечении возможности его разъемного cочленения, а также увеличение развязки между сигналами в коаксиальном и круглом волноводах устройства. 6 ил.

Смотреть патент,
Читать в сети ИФ
Держатели документа:
Институт физики им. Л. В. Киренского СО РАН

Доп.точки доступа:
Лемберг, Константин Вячеславович; Lemberg, K. V.; Боев, Никита Михайлович; Boev, N. M.; Шабанов, Дмитрий Александрович; Shabanov, D. A.; Клешнина, Софья Андреевна; Kleshnina, S. A.; Грушевский, Евгений Олегович; Grushevskii, Ye. O.; Александровский, Александр Сергеевич; Aleksandrovsky, A. S.; Лексиков, Андрей Александрович; Leksikov, An. A.; Шумилов, Тимофей Юрьевич; Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук"; Федеральная служба по интеллектуальной собственности (Роспатент); Федеральный институт промышленной собственности
}
Найти похожие
4.


    Vetrov, S. Ya.
    Spectral and polarization properties of a ‘cholesteric liquid crystal—phase plate—metal’ structure / S. Y. Vetrov, M. V. Pyatnov, I. V. Timofeev // J. Opt. - 2016. - Vol. 18, Is. 1. - Ст. 015103, DOI 10.1088/2040-8978/18/1/015103. - Cited References:34. - This work was supported by the Russian Foundation for Basic Research, project no. 14-02-31248, and the Ministry of Education and Science of the Russian Federation, Government program, project no. 3.1276.2014/K. . - ISSN 2040-8978. - ISSN 2040-8986
РУБ Optics
Рубрики:
OPTICAL TAMM STATES
   MODES

   LIGHT

Кл.слова (ненормированные):
photonic band gap materials -- cholesteric liquid crystals -- localized -- states -- optical filters -- optical waveguides
Аннотация: We investigate the localized surface modes in a structure consisting of the cholesteric liquid crystal layer, a phase plate, and a metal layer. These modes are analogous to the optical Tamm states. The nonreciprocal transmission of polarized light propagating in the forward and backward directions is established. It is demonstrated that the transmission spectrum can be controlled by external fields acting on the cholesteric liquid crystal and by varying the plane of polarization of the incident light.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Siberian Branch, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Engn Phys & Radio Elect, Krasnoyarsk 660041, Russia.
Siberian Fed Univ, Lab Nonlinear Opt & Spect, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Pyatnov, M. V.; Timofeev, I. V.; Тимофеев, Иван Владимирович; Ветров, Степан Яковлевич; Russian Foundation for Basic Research [14-02-31248]; Ministry of Education and Science of the Russian Federation, Government program [3.1276.2014/K]
}
Найти похожие
5.


   
    Titanium nitride nanoparticles as an alternative platform for plasmonic waveguides in the visible and telecommunication wavelength ranges / V. I. Zakomirnyi [et al.] // Photonics Nanostruc. Fundam. Appl. - 2018. - Vol. 30. - P. 50-56, DOI 10.1016/j.photonics.2018.04.005. - Cited References: 85. - This work was supported by the RF Ministry of Education and Science, the State contract with Siberian Federal University for scientific research in 2017–2019 and SB RAS Program No II.2P (0358-2015-0010). . - ISSN 1569-4410
Кл.слова (ненормированные):
Nanoparticle -- Titanium nitride -- Surface plasmon polariton -- Plasmon waveguide -- Refractory plasmonics
Аннотация: We propose to utilize titanium nitride (TiN) as an alternative material for linear periodic chains (LPCs) of nanoparticles (NPs) which support surface plasmon polariton (SPP) propagation. Dispersion and transmission properties of LPCs have been examined within the framework of the dipole approximation for NPs with various shapes: spheres, prolate and oblate spheroids. It is shown that LPCs of TiN NPs support high-Q eigenmodes for an SPP attenuation that is comparable with LPCs from conventional plasmonic materials such as Au or Ag, with the advantage that the refractory properties and cheap fabrication of TiN nanostructures are more preferable in practical implementations compared to Au and Ag. We show that the SPP decay in TiN LPCs remains almost the same even at extremely high temperatures which is impossible to reach with conventional plasmonic materials. Finally, we show that the bandwidth of TiN LPCs from non-spherical particles can be tuned from the visible to the telecommunication wavelength range by switching the SPP polarization, which is an attractive feature for integrating these structures into modern photonic devices.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Zakomirnyi, V. I.; Rasskazov, I. L.; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Ershov, A. E.; Ершов, Александр Евгеньевич; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Agren, H.
}
Найти похожие
6.


   
    Three-wave mixing of ordinary and backward electromagnetic waves: Extraordinary transients in the nonlinear reflectivity and parametric amplification / V. V. Slabko [et al.] // Opt. Lett. - 2016. - Vol. 41, Is. 17. - P. 3976-3979, DOI 10.1364/OL.41.003976 . - ISSN 0146-9592
Кл.слова (ненормированные):
Amplification -- Circular waveguides -- Electromagnetic waves -- Mixing -- Nonlinear optics -- Phase matching -- Reflection -- Backward waves -- Energy fluxes -- Non-linear reflectivity -- Optical parametric amplification -- Parametric amplification -- Three wave mixing -- Transient process -- Optical parametric amplifiers
Аннотация: Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings. © 2016 Optical Society of America.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, 79 Svobodny Av., Krasnoyarsk, Russian Federation
Birck Nanotechnology Center, Purdue University, 1205 W State St., West Lafayette, IN, United States
L. V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Slabko, V. V.; Слабко, Виталий Васильевич; Popov, A. K.; Tkachenko, V. A.; Myslivets, S. A.; Мысливец, Сергей Александрович
}
Найти похожие
7.


   
    Thermal limiting effects in optical plasmonic waveguides / A. E. Ershov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2017. - Vol. 191. - P. 1-6, DOI 10.1016/j.jqsrt.2017.01.023. - Cited References: 51. - This work was performed within the State contract of the RF Ministry of Education and Science for Siberian Federal University for scientific research in 2017-2019 and SB RAS Program No II.2P (0358-2015-0010). The numerical calculations were performed using the MVS-1000M cluster at the Institute of Computational Modeling, Federal Research Center KSC SB Russian Academy of Sciences. . - ISSN 0022-4073
Кл.слова (ненормированные):
Plasmon resonance -- Optical plasmonic waveguide -- Surface plasmon polariton -- Thermal effects
Аннотация: We have studied thermal effects occurring during excitation of optical plasmonic waveguide (OPW) in the form of linear chain of spherical Ag nanoparticles by pulsed laser radiation. It was shown that heating and subsequent melting of the first irradiated particle in a chain can significantly deteriorate the transmission efficiency of OPW that is the crucial and limiting factor and continuous operation of OPW requires cooling devices. This effect is caused by suppression of particle's surface plasmon resonance due to reaching the melting point temperature. We have determined optimal excitation parameters which do not significantly affect the transmission efficiency of OPW. © 2017

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Доп.точки доступа:
Ershov, A. E.; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Zakomirnyi, V. I.; Rasskazov, I. L.; Polyutov, S. P.
}
Найти похожие
8.


   
    Thermal effects in optical plasmonic waveguides / A. E. Ershov [et al.] // Журнал прикладной спектроскопии. - 2016. - Т. 83: Спецвыпуск, Вып. 6-16. - P. 96-97 . - ISSN 0514-7506
Аннотация: We investigate the influence of the heating of the optical plasmonic waveguide in the form of chains of the plasmonic nanoparticles by laser radiation on its transmission properties.

РИНЦ

Доп.точки доступа:
Ershov, A. E.; Ершов, Александр Евгеньевич; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Rasskazov, I. L.; Zakomirnyi, V. I.; Закомирный Вадим Игоревич; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Polyutov, S. P.; International Conference on Coherent and Nonlinear Optics(2016 ; Sept. ; 26-30 ; Minsk, Belarus); International Conference on Lasers, Applications, and Technologies(2016 ; Sept. ; 26-30 ; Minsk, Belarus)
}
Найти похожие
9.


   
    Thermal effects in optical plasmonic waveguides / A. E. Ershov [и др.] // The International Conference on Coherent and Nonlinear Optics; The Lasers, Applications, and Technologies ICONO/LAT 2016. - 2016. - Ст. IThL14. - P. 79-80
Аннотация: We investigate the influence of the heating of the optical plasmonic waveguide in the form of chains of the plasmonic nanoparticles by laser radiation on its transmission properties

Материалы конференции,
Материалы конференции

Доп.точки доступа:
Ershov, A. E.; Ершов, Александр Евгеньевич; Gerasimov, R.E.; Rasskazov, I. L.; Рассказов, Илья Леонидович; Zakomirnyi, V. I.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Karpov, S. V.; Карпов, Сергей Васильевич; Polyutov, S. P.; International Conference on Coherent and Nonlinear Optics(2016 ; Sept. ; 26-30 ; Minsk, Belarus); International Conference on Lasers, Applications, and Technologies(2016 ; Sept. ; 26-30 ; Minsk, Belarus)
}
Найти похожие
10.


    Sadreev, A. F.
    Gate controlled resonant widths in double-bend waveguides: bound states in the continuum / A. F. Sadreev, D. N. Maksimov, A. S. Pilipchuk // J. Phys.: Condens. Matter. - 2015. - Vol. 27, Is. 29. - Ст. 295303, DOI 10.1088/0953-8984/27/29/295303. - Cited References:52. - This work is supported by the Russian Science Foundation through Grant No. 14-12-00266. AS is grateful K-F Berggren for discussions. . - ISSN 0953. - ISSN 1361-648X
   Перевод заглавия: Управление резонансными ширинами в двух-коленных волноводах: связанные состояния в континууме
РУБ Physics, Condensed Matter
Рубрики:
CIRCULAR BENDS
   NUCLEAR REACTIONS

   FANO RESONANCES

   UNIFIED THEORY

   QUANTUM

   TRANSMISSION

   TRANSPORT

   SYSTEMS

Кл.слова (ненормированные):
double-bent waveguide -- effective non-Hermittian Hamiltonian -- bound -- states in the continuum
Аннотация: We consider quantum transmission through double-bend Pi- and Z-shaped waveguides controlled by the finger gate potential. Using the effective non-Hermitian Hamiltonian approach we explain the resonances in transmission. We show a difference in transmission in the short waveguides that is the result of different chirality in Z and Pi waveguides. We demonstrate that the potential selectively affects the resonant widths resulting in the occurrence of bound states in the continuum.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Siberian Branch, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660080, Russia.

Доп.точки доступа:
Maksimov, D. N.; Максимов, Дмитрий Николаевич; Pilipchuk, A. S.; Пилипчук, Артем Сергеевич; Садреев, Алмаз Фаттахович; Russian Science Foundation [14-12-00266]
}
Найти похожие
11.


    Sadreev, A. F.
    Current statistics for wave transmission through an open Sinai billiard: Effects of net currents / A. F. Sadreev, K. F. Berggren // Phys. Rev. E. - 2004. - Vol. 70, Is. 2. - Ст. 26201, DOI 10.1103/PhysRevE.70.026201. - Cited References: 27 . - ISSN 1539-3755
РУБ Physics, Fluids & Plasmas + Physics, Mathematical
Рубрики:
EIGENVECTOR STATISTICS
   OPEN SYSTEMS

   EIGENFUNCTIONS

   CHAOS

   FLUCTUATIONS

   CROSSOVER

   ELECTRONS

   INTENSITY

Кл.слова (ненормированные):
Acoustic wave transmission -- Boundary conditions -- Computer simulation -- Continuum mechanics -- Current density -- Fermi level -- Mathematical transformations -- Microwaves -- Probability density function -- Quantum theory -- Random processes -- Reverberation -- Statistical methods -- Surface waves -- Waveguides -- Microwave cavities -- Poynting vector -- Sinai billiard -- Wave functions -- Cavity resonators
Аннотация: Transport through quantum and microwave cavities is studied by analytic and numerical techniques. In particular, we consider the statistics for a finite net probability current (Poynting vector) flowing through an open ballistic Sinai billiard to which two opposite leads/wave guides are attached. We show that if the net probability current is small, the scattering wave function inside the billiard is well approximated by a Gaussian random complex field. In this case, the current statistics are universal and obey simple analytic forms. For larger net currents, these forms still apply over several orders of magnitudes. However, small characteristic deviations appear in the tail regions. Although the focus is on electron and microwave billiards, the analysis is relevant also to other classical wave cavities as, for example, open planar acoustic reverberation rooms, elastic membranes, and water surface waves in irregularly shaped vessels.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
Astafev Krasnoyarsk Pedag Univ, Krasnoyarsk 660049, Russia
ИФ СО РАН
Department of Physics, Linkoping University, S-581 83 Linkoping, Sweden
Kirensky Institute of Physics, 660036 Krasnoyarsk, Russian Federation
Astaf'ev Krasnoyarsk Pedagogical U., 660049 Lebedeva, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Berggren, K. F.; Садреев, Алмаз Фаттахович
}
Найти похожие
12.


   
    Quantum dots embedded into silicon nanowires effectively partition electron confinement / P. V. Avramov [et al.] // J. Appl. Phys. - 2008. - Vol. 104, Is. 5. - Ст. 54305, DOI 10.1063/1.2973464. - Cited References: 22. - This work was, in part, partially supported by a Core Research for Evolutional Science and Technology (CREST) grant in the area of high performance computing for multi-scale and multiphysics phenomena from the Japan Science and Technology Agency (JST) as well as by the Russian Fund of Basic Researches (Grant No. 05-02-17443) (L.A.C.). One of the authors (P.V.A.) acknowledges the encouragement of Dr. Keiji Morokuma, Research Leader at Fukui Institute. The geometry of all presented structures was visualized by ChemCraft software. SUP23/SUP L.A.C. acknowledges I. V. Stankevich for help and fruitful discussions. P.B.S. is grateful to the Joint Supercomputer Center of the Russian Academy of Sciences for access to a cluster computer for quantum-chemical calculations. . - ISSN 0021-8979
РУБ Physics, Applied
Рубрики:
OPTICAL-PROPERTIES
   POROUS SILICON

   WIRES

   PREDICTION

   GROWTH

Кл.слова (ненормированные):
Electric currents -- Electric wire -- Electronic states -- Electronic structure -- Nanostructured materials -- Nanostructures -- Nanowires -- Nonmetals -- Optical waveguides -- Plasma confinement -- Quantum confinement -- Quantum electronics -- Semiconducting silicon compounds -- Silicon -- electronic state -- Band gaps -- Electron confinements -- Electronic-structure calculations -- Embedded structures -- Quantum confinement effect -- Quantum dots -- Semi-empirical methods -- Silicon nanowires -- Silicon quantum dots -- Semiconductor quantum dots
Аннотация: Motivated by the experimental discovery of branched silicon nanowires, we performed theoretical electronic structure calculations of icosahedral silicon quantum dots embedded into pentagonal silicon nanowires. Using the semiempirical method, we studied the quantum confinement effect in the fully optimized embedded structures. It was found that (a) the band gaps of the embedded structures are closely related to the linear sizes of the longest constituting part rather than to the total linear dimension and (b) the discovered atypical quantum confinement with a plateau and a maximum can be attributed to the substantial interactions of near Fermi level electronic states of the quantum dots and nanowire segments. (c) 2008 American Institute of Physics.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Avramov, Pavel V.] Kyoto Univ, Fukui Inst Fundamental Chem, Kyoto 6068103, Japan
[Fedorov, Dmitri G.] Natl Inst Adv Ind Sci & Technol, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan
[Sorokin, Pavel B.
Ovchinnikov, Sergei G.] LV Kirensky Inst Phys SB RAS, Krasnoyarsk 660036, Russia
[Sorokin, Pavel B.
Ovchinnikov, Sergei G.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Sorokin, Pavel B.
Chernozatonskii, Leonid A.] RAS, NM Emanuel Inst Biochem Phys, Moscow 119334, Russia
ИФ СО РАН
Fukui Institute for Fundamental Chemistry, Kyoto University, 34-3 Takano Nishihiraki, Sakyo, Kyoto 606-8103, Japan
Research Institute for Computational Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8568, Japan
L.V. Kirensky Institute of Physics, SB, RAS, 660036 Krasnoyarsk, Russian Federation
Siberian Federal University, 79 Svobodny Av., 660041 Krasnoyarsk, Russian Federation
N.M. Emanuel Institute of Biochemical Physics, RAS, 119334 Moscow, Russian Federation

Доп.точки доступа:
Avramov, P. V.; Аврамов, Павел Вениаминович; Fedorov, D. G.; Sorokin, P. B.; Chernozatonskii, L. A.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич
}
Найти похожие
13.


    Pilipchuk, A. S.
    Generation of vortex waves in non-coaxial cylindrical waveguides / A. S. Pilipchuk, A. A. Pilipchuk, A. F. Sadreev // J. Acoust. Soc. Am. - 2019. - Vol. 146, Is. 6. - Ст. 4333, DOI 10.1121/1.5139222. - Cited References: 26. - We acknowledge discussions with Dmitrii Maksimov. This work was supported by RFBR Grant No. 18-32-00234. . - ISSN 0001-4966. - ISSN 1520-8524
   Перевод заглавия: Генерация вихревых волн в некоаксиальных цилиндрических волноводах
Рубрики:
Operator theory
   Coordinate system

   Waveguides

   Wave mechanics

   Acoustic field

   Optical field

   Optical tweezers

   Acoustical properties

   Acoustic waves

   Electrical properties and parameters

Аннотация: A non-coaxial waveguide composed of a cylindrical resonator of radius R and cylindrical waveguides with the radii r1 and r2, respectively, is considered. The radii satisfy the inequality r1˂r2˂R. The conversion from the channel with zero orbital angular momentum (OAM) into the channels with non-zero OAM is achieved by shifting the center lines of the waveguides relative to the center line of the cylindrical resonator. The center lines of input and output waveguides are shifted relative to each other by the angle Δϕ in order to twist the output acoustic wave. The conversion efficiency of the input wave with zero OAM into the output wave with non-zero OAM as dependent on the frequency, length of the resonator, and Δϕ is considered, and the domains where the efficiency can reach almost 100% are found.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia

Доп.точки доступа:
Pilipchuk, A. A.; Пилипчук, Алина Андреевна; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Пилипчук, Артем Сергеевич
}
Найти похожие
14.


    Pichugin, K. N.
    Analysis of a channel-drop filter based on dispersive waveguides and two resonant cavities / K. N. Pichugin, A. F. Sadreev // J. Opt. - 2013. - Vol. 15, Is. 3. - Ст. 35502. - P. , DOI 10.1088/2040-8978/15/3/035502. - Cited References: 35. - The work is partially supported by RFBR grant 13-07-98018-a and RFBR grant 'Sibir' 13-07-00497 . - ISSN 2040-8978
РУБ Optics
Рубрики:
PHOTONIC CRYSTAL SLABS
   REFLECTION FEEDBACK

   MODES

   DESIGN

Кл.слова (ненормированные):
channel dropping -- dispersive waveguides -- optical micro-cavities
Аннотация: By use of coupled-mode theory we analyze a channel add-drop filter based on two dispersive waveguides symmetrically coupled with two resonant optical cavities. We show new solutions for the channel-drop filter processes compared to the solutions found by Manolatou et al (1999 IEEE J. Quantum Electron. 35 1322). For a special choice of the dispersion of the waveguides, we reveal a frequency region with sufficient total reflection.

Смотреть статью,
WoS,
WOS,
Читать в сети ИФ

Доп.точки доступа:
Sadreev, A. F.; Садреев, Алмаз Фаттахович; Пичугин, Константин Николаевич
}
Найти похожие
15.


   
    Multiple bound states in scissor-shaped waveguides / E. N. Bulgakov [et al.] // Phys. Rev. B. - 2002. - Vol. 66, Is. 15. - Ст. 155109, DOI 10.1103/PhysRevB.66.155109. - Cited References: 32 . - ISSN 1098-0121
РУБ Physics, Condensed Matter
Рубрики:
QUANTUM WAVE-GUIDES
   HELMHOLTZ EQUATION

   RADIATION-FIELD

   HALL RESISTANCE

   RESONANCES

   WIRES

   PROPAGATION

   MODES

Аннотация: We study bound states of the two-dimensional Helmholtz equations with Dirichlet boundary conditions in an open geometry given by two straight leads of the same width which cross at an angle theta. Such a four-terminal junction with a tunable theta can realized experimentally if a right-angle structure is filled by a ferrite. It is known that for theta=90degrees there is one proper bound state and one eigenvalue embedded in the continuum. We show that the number of eigenvalues becomes larger with increasing asymmetry and the bound-state energies are increasing as functions of theta in the interval (0,90degrees). Moreover, states which are sufficiently strongly bound exist in pairs with a small energy difference and opposite parities. Finally, we discuss how the bound states transform with increasing theta into quasibound states with a complex wave vector.

WOS,
Читать в сети ИФ
Держатели документа:
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
Acad Sci Czech Republ, Inst Nucl Phys, CZ-25068 Rez, Czech Republic
Czech Tech Univ, Doppler Inst, Prague 11519, Czech Republic
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
ИФ СО РАН

Доп.точки доступа:
Bulgakov, E. N.; Булгаков, Евгений Николаевич; Exner, P.; Pichugin, K. N.; Пичугин, Константин Николаевич; Sadreev, A. F.; Садреев, Алмаз Фаттахович
}
Найти похожие
16.


    Maksimov, D. N.
    Bound states in elastic waveguides / D. N. Maksimov, A. F. Sadreev // Phys. Rev. E. - 2006. - Vol. 74, Is. 1. - Ст. 16201, DOI 10.1103/PhysRevE.74.016201. - Cited References: 26 . - ISSN 1539-3755
РУБ Physics, Fluids & Plasmas + Physics, Mathematical
Рубрики:
CLASSICALLY UNBOUND SYSTEM
   QUANTUM WIRES

Аннотация: We consider numerically the L-, T-, and X-shaped elastic waveguides with the Dirichlet boundary conditions for in-plane deformations (displacements) which obey the vectorial Navier-Cauchy equation. In the X-shaped waveguide we show the existence of a doubly degenerate bound state with frequency below the first symmetrical cutoff frequency, which belongs to the two-dimensional irreducible representation E of symmetry group C-4v. Moreover the next bound state is below the next antisymmetric cutoff frequency. This bound state belongs to the irreducible representation A(2). The T-shaped waveguide has only one bound state while the L-shaped one has no bound states.

WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Phys, Krasnoyarsk 660036, Russia
Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden
ИФ СО РАН

Доп.точки доступа:
Sadreev, A. F.; Садреев, Алмаз Фаттахович; Максимов, Дмитрий Николаевич
}
Найти похожие
17.


    Ignatchenko, V. A.
    Green’s functions of spin and electromagnetic waves in the sinusoidal superlattice / V. A. Ignatchenko, D. S. Tsikalov // Solid State Phenom. : Selected, peer reviewed papers. - 2015. - Vol. 233-234: Achievements in Magnetism. - P. 47-50, DOI 10.4028/www.scientific.net/SSP.233-234.47 . - ISSN 1662-9779. - ISSN 978-3-038
Кл.слова (ненормированные):
Continued fractions -- Electromagnetic waves -- Green’s functions -- Magnonic crystals -- Photonic crystals -- Sinusoidal modulation -- Spin waves -- Superlattices -- Circular waveguides -- Fourier transforms -- Green's function -- Photonic crystals -- Spin waves -- Superlattices -- Analytical expressions -- Continued fraction -- Fourier transformations -- Magnonic crystals -- S function -- Sinusoidal modulation -- Spectral representations -- Electromagnetic waves
Аннотация: The problem of finding the Green's function of spin and electromagnetic waves in the sinusoidal superlattice is considered. An analytical expression for the spectral representation of the Green's function has been found in the form of ascending continued fractions, the particular denominators of which are ordinary continued fractions. The Green’s function in the r -space has been found by the numerical Fourier transformation of the Greens’s function found in the spectral representation. © (2015) Trans Tech Publications, Switzerland.

Scopus,
Материалы конференции,
Смотреть статью,
Читать в сети ИФ

Доп.точки доступа:
Perov, N. \ed.\; Semisalova, A. \ed.\; Tsikalov, D. S.; Цикалов, Денис Сергеевич; Игнатченко, Вальтер Алексеевич; Moscow International Symposium on Magnetism(6 ; 2014 ; June-July ; Moscow)
}
Найти похожие
18.


   
    General framework of bound states in the continuum in an open acoustic resonator / L. Huang, B. Jia, A. S. Pilipchuk [et al.] // Phys. Rev. Appl. - 2022. - Vol. 18, Is. 5. - Ст. 054021, DOI 10.1103/PhysRevApplied.18.054021. - Cited References: 47. - L.H. and A.E.M. are supported by the Australian Research Council Discovery Project (Grant No. DP200101353) and the UNSW Scientia Fellowship program. Y.K.C. and D.A.P. are supported by the Australian Research Council Discovery Project (Grant No. DP200101708). B.J., S.H., and Y.L. are supported by the National Natural Science Foundation of China (Grant No. 12074286) and the Shanghai Science and Technology Committee (Grant No. 21JC1405600). A.P., E.B., and A.S. are supported by the Russian Science Foundation (Grant No. 22-12-00070) . - ISSN 2331-7019
Кл.слова (ненормированные):
Acoustic resonators -- Acoustic waveguides -- Bound-states -- Coupled waveguide resonators -- Degenerate modes -- Eigen modes -- General method -- High-Q resonances -- Momentum spaces -- Non-Hermitian Hamiltonians -- Waveguide-resonators -- Waveguide filters
Аннотация: Bound states in the continuum (BICs) provide a viable way of achieving high-Q resonances in both photonics and acoustics. In this work, we propose a general method of constructing Friedrich-Wintgen (FW) BICs and accidental BICs in a coupled acoustic waveguide-resonator system. We demonstrate that FW BICs can be achieved with arbitrary two degenerate resonances in a closed resonator, regardless of whether they have the same or opposite parity. Moreover, their eigenmode profiles can be arbitrarily engineered by adjusting the position of the attached waveguide. This suggests an effective way of continuously switching the nature of the BICs from FW BICs to symmetry-protected BICs or accidental BICs. Also, such BICs are sustained in the coupled waveguide-resonator system with shapes such as rectangles, ellipses, and rhomboids. These interesting phenomena are well explained by the two-level effective non-Hermitian Hamiltonian, where two strongly coupled degenerate modes play a major role in forming such FW BICs. Additionally, we find that such an open system also supports accidental BICs in geometry space instead of momentum space via tuning the position of the attached waveguide, which is attributed to the quenched coupling between the waveguide and eigenmodes of the closed cavity. Finally, we fabricate a series of three-dimensional coupled resonator waveguides and experimentally verify the existence of FW BICs and accidental BICs by measuring the transmission spectra. Our results complement the current BIC library in acoustics and provide nice routes for designing acoustic devices, such as acoustic absorbers, filters, and sensors.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
School of Engineering and Information Technology, University of New South Wales, Northcott Drive, Canberra, ACT 2600, Australia
Institute of Acoustics, Tongji University, Shanghai, 200092, China
L. V. Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, RAN, Krasnoyarsk, 660036, Russian Federation
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States
Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, United States

Доп.точки доступа:
Huang, L.; Jia, B.; Pilipchuk, A. S.; Пилипчук, Артем Сергеевич; Chiang, Y.; Huang, S.; Li, J.; Shen, C.; Bulgakov, E. N.; Булгаков, Евгений Николаевич; Deng, F.; Powell, D. A.; Cummer, S. A.; Li, Y.; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Miroshnichenko, A. E.
}
Найти похожие
19.


   
    Frequency mixing in a gas-filled wave-guide for VUV light generation / V. G. Arkhipkin [et al.] // Appl. Phys. B. - 1985. - Vol. 37, Is. 2. - P. 93-97, DOI 10.1007/BF00692555. - Cited References: 17 . - ISSN 0721-7269
РУБ Physics, Applied

Кл.слова (ненормированные):
42.65 -- LIGHT - Nonlinear Optical Effects -- WAVEGUIDES, OPTICAL -- FREQUENCY MIXING -- GAS-FILLED WAVEGUIDE -- ULTRAVIOLET RADIATION

WOS,
Scopus
Держатели документа:
L. V. Kirensky Institute of Physics, USSR Academy of Sciences, Siberian Branch, Kransnoyarsk, SU-660036, Russia
Krasnoyarsk State University, Kransnoyarsk, SU-660036, Russia

Доп.точки доступа:
Arkhipkin, V. G.; Архипкин, Василий Григорьевич; Heller, Y. I.; Popov, A. K.; Попов, Александр Кузьмич; Provorov, A. S.
}
Найти похожие
20.


   
    Fabry-Perot bound states in the continuum in an anisotropic photonic crystal / S. V. Nabol, P. S. Pankin, D. N. Maksimov, I. V. Timofeev // Phys. Rev. B. - 2022. - Vol. 106, Is. 24. - Ст. 245403, DOI 10.1103/PhysRevB.106.245403. - Cited References: 42. - We acknowledge discussions with Almas F. Sadreev. This study was supported by the Council on Grants of the President of the Russian Federation (MK-4012.2021.1.2) . - ISSN 2469-9950. - ISSN 2469-9969
   Перевод заглавия: Связанное состояние в континууме Фабри-Перо в анизотропном фотонном кристалле
Кл.слова (ненормированные):
Fabry-Perot interferometers -- Optical waveguides -- Photonic crystals
Аннотация: An anisotropic photonic crystal containing two anisotropic defect layers is considered. It is demonstrated that the system can support a Fabry-Perot bound state in the continuum (FP-BIC). A fully analytic solution of the scattering problem as well as a condition for FP-BIC have been derived in the framework of the temporal coupled-mode theory.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Nabol, S. V.; Наболь, Степан Васильевич; Pankin, P. S.; Панкин, Павел Сергеевич; Maksimov, D. N.; Максимов, Дмитрий Николаевич; Timofeev, I. V.; Тимофеев, Иван Владимирович
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)