Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Erkaev, N. V.$<.>)
Общее количество найденных документов : 13
Показаны документы с 1 по 10
 1-10    11-13 
1.


   
    Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection / A. . Divin [et al.] // Phys. Plasmas. - 2010. - Vol. 17, Is. 12. - Ст. 122102, DOI 10.1063/1.3521576. - Cited References: 42. - The present work is supported partially by the Onderzoekfonds KU Leuven (Research Fund KU Leuven) and by the European Commission's Seventh Framework Programme (FP7/2007-2013) under grant Agreement No. 218816 (SOTERIA project, www.soteria- space.eu). Additional support is provided by RFBR (Grant No. 09-05-91000-ANF-a). V.S.S. thanks ISSI for hospitality and financial support. The simulations were conducted on the resources of the Vlaams Supercomputer Centrum (VSC) at the Katholieke Universiteit Leuven. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
CURRENT SHEETS
   X-LINE

   PLASMA

   DISSIPATION

   FIELD

   SIMULATIONS

   ACCELERATION

   TRANSPORT

Кл.слова (ненормированные):
Analytical results -- Antiparallel configuration -- Collisionless -- Electron diffusion -- Electron population -- Electron pressures -- Magnetic reconnections -- Neutral line -- New model -- Particle-in-cell simulations -- Two particles -- Anisotropy -- Astrophysics -- Collisionless plasmas -- Computer simulation -- Diffusion -- Geophysics -- Magnetic fields -- Magnetic properties -- Plasma simulation -- Electrons
Аннотация: A new model of the electron pressure anisotropy in the electron diffusion region in collisionless magnetic reconnection is presented for the case of antiparallel configuration of magnetic fields. The plasma anisotropy is investigated as source of collisionless dissipation. By separating electrons in the vicinity of the neutral line into two broad classes of inflowing and accelerating populations, it is possible to derive a simple closure for the off-diagonal electron pressure component. The appearance of these two electron populations near the neutral line is responsible for the anisotropy and collisionless dissipation in the magnetic reconnection. Particle-in-cell simulations verify the proposed model, confirming first the presence of two particle populations and second the analytical results for the off-diagonal electron pressure component. Furthermore, test-particle calculations are performed to compare our approach with the model of electron pressure anisotropy in the inner electron diffusion region by Fujimoto and Sydora [Phys. Plasmas 16, 112309 (2009)]. (C) 2010 American Institute of Physics. [doi:10.1063/1.3521576]

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Divin, A.
Markidis, S.
Lapenta, G.] Katholieke Univ Leuven, Ctr Plasma Astrofys, B-3001 Heverlee, Belgium
[Semenov, V. S.] St Petersburg State Univ, Dept Phys, St Petersburg 198504, Russia
[Erkaev, N. V.] Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
[Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Biernat, H. K.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[Biernat, H. K.] Graz Univ, Inst Phys, A-8010 Graz, Austria
ИВМ СО РАН
Centrum voor Plasma-astrofysica, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
Department of Physics, St. Petersburg State University, St. Petersburg 198504, Russian Federation
Institute for Computational Modelling, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Krasnoyarsk 660041, Russian Federation
Space Research Institute, Austrian Academy of Sciences, Graz A-8042, Austria
Institute of Physics, University of Graz, Graz A-8010, Austria

Доп.точки доступа:
Divin, A.; Markidis, S.; Lapenta, G.; Semenov, V. S.; Erkaev, N. V.; Еркаев, Николай Васильевич; Biernat, H. K.
}
Найти похожие
2.


   
    Kinetic Alfven wave instability in a Lorentzian dusty magnetoplasma / N. . Rubab [et al.] // Phys. Plasmas. - 2010. - Vol. 17, Is. 10. - Ст. 103704, DOI 10.1063/1.3491336. - Cited References: 54. - This work is funded by the Higher Education Commission of Pakistan under the HEC-Overseas scholarship program Grant No. Ref: 1-1/PM OS /Phase-II/Batch-I/Austria/2007/. Part of this work was done while N. V. Erkaev was at the Space Research Institute of the Austrian Academy of Sciences in Graz. This work is also supported due to the RFBR Grant No. 09-05-91000-ANF-a. Further support is due to the "Austrian Fonds zur Forderung der Wissenschaftlichen Forschung" under Grant No. P20145-N16. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
MAXWELLIAN DISTRIBUTION-FUNCTIONS
   FREQUENCY ELECTROMAGNETIC-WAVES

   SOLAR-WIND

   CHARGE FLUCTUATION

   2-STREAM INSTABILITIES

   ELECTROSTATIC MODES

   SPACE PLASMAS

   ION PLASMA

   TEMPERATURE

   PROPAGATION

Кл.слова (ненормированные):
Analytical expressions -- Dispersion relations -- Distributed streaming -- Dust acoustic -- Dust particle -- Growth rate of instabilities -- Magnetized electrons -- N-waves -- Potential theory -- Slow motion -- Streaming velocity -- Theoretical approach -- Two stream instability -- Whistler waves -- Dust -- Magnetic field effects -- Plasma waves -- Stability -- Acoustic wave propagation
Аннотация: This study presents a theoretical approach to analyze the influence of kappa distributed streaming ions and magnetized electrons on the plasma wave propagation in the presence of dust by employing two-potential theory. In particular, analytical expressions under certain conditions are derived for various modes of propagation comprising of kinetic Alfven wave streaming instability, two stream instability, and dust acoustic and whistler waves. A dispersion relation for kinetic Alfven-like streaming instability has been derived. The effects of dust particles and Lorentzian index on the growth rates and the threshold streaming velocity for the excitation of the instability are examined. The streaming velocity is observed to be destabilizing for slow motion and stabilizing for fast streaming motions. It is also observed that the presence of magnetic field and superthermal particles hinders the growth rate of instability. Possible applications to various space and astrophysical situations are discussed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3491336]

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Rubab, N.
Biernat, H. K.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[Rubab, N.
Biernat, H. K.] Graz Univ, Inst Phys, A-8010 Graz, Austria
[Erkaev, N. V.] Inst Computat Modelling, Krasnoyarsk 660036, Russia
[Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Langmayr, D.] Virtual Vehicle Competence Ctr Vif, A-8010 Graz, Austria
ИВМ СО РАН
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria
And Institute of Physics, University of Graz, Universitatplatz 5, A-8010 Graz, Austria
Institute of Computational Modelling, 660036 Krasnoyarsk, Russian Federation
Siberian Federal University, 660041 Krasnoyarsk, Russian Federation
Virtual Vehicle Competence Center (Vif), Inffeldgasse 21a, 8010 Graz, Austria

Доп.точки доступа:
Rubab, N.; Erkaev, N. V.; Еркаев, Николай Васильевич; Langmayr, D.; Biernat, H. K.
}
Найти похожие
3.


   
    Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices / U. V. Amerstorfer [et al.] // Phys. Plasmas. - 2010. - Vol. 17, Is. 7. - Ст. 72901, DOI 10.1063/1.3453705. - Cited References: 26. - This work was supported by the FWF under Project No. P21051-N16 and also by the RFBR under Grant No. 09-05-91000-ANF_a. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
VENUS IONOPAUSE
   SIMULATION

   SCHEMES

   PLASMA

   FLOW

Кл.слова (ненормированные):
A-density -- Kelvin-Helmholtz instabilities -- Linear growth -- Loss rates -- Nonlinear numerical simulation -- Nonlinear phase -- Nonregular structures -- Plasma clouds -- Plasma layer -- Regular structure -- Spatial scale -- Turbulent phase -- Upper layer -- Boundary layers -- Helmholtz equation -- Ionosphere -- Plasma density -- Solar wind -- Magnetoplasma
Аннотация: Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices are about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus. (C) 2010 American Institute of Physics. [doi:10.1063/1.3453705]

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Amerstorfer, U. V.
Biernat, H. K.] Austrian Acad Sci, Inst Space Res, A-8042 Graz, Austria
[Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Erkaev, N. V.] Inst Computat Modelling, Krasnoyarsk 660036, Russia
[Taubenschuss, U.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[Biernat, H. K.] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria
ИВМ СО РАН
Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria
Siberian Federal University, 660041 Krasnoyarsk, Russian Federation
Institute of Computational Modelling, 660036 Krasnoyarsk, Russian Federation
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242-1479, United States
Institute of Physics, Karl-Franzens-University Graz, 8010 Graz, Austria

Доп.точки доступа:
Amerstorfer, U. V.; Erkaev, N. V.; Еркаев, Николай Васильевич; Taubenschuss, U.; Biernat, H. K.
}
Найти похожие
4.


    Erkaev, N. V.
    Hall magnetohydrodynamic effects for current sheet flapping oscillations related to the magnetic double gradient mechanism / N. V. Erkaev, V. S. Semenov, H. K. Biernat // Phys. Plasmas. - 2010. - Vol. 17, Is. 6. - Ст. 60703, DOI 10.1063/1.3439687. - Cited References: 15. - This work is supported by RFBR (Grant Nos. N 07-05-00776-a and N 09-05-91000-ANF_a), and by Program No. 16 of RAS. Additional support is due to the Austrian "Fonds zur Forderung der wissenschaftlichen Forschung" under Project No. I 193-N16 and the "Verwaltungsstelle fur Auslandsbeziehungen" of the Austrian Academy of Sciences. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
CLUSTER OBSERVATIONS
   MAGNETOTAIL

Аннотация: Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the "kink" and "sausage" flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating along the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity. (C) 2010 American Institute of Physics. [doi:10.1063/1.3439687]

WOS,
Читать в сети ИФ
Держатели документа:
[Erkaev, N. V.] SB RAS, Inst Computat Modelling, Krasnoyarsk, Russia
[Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk, Russia
[Semenov, V. S.] St Petersburg State Univ, Inst Phys, St Petersburg, Russia
[Biernat, H. K.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[Biernat, H. K.] Graz Univ, Inst Phys, Graz, Austria
ИВМ СО РАН

Доп.точки доступа:
Semenov, V. S.; Biernat, H. K.; Еркаев, Николай Васильевич
}
Найти похожие
5.


   
    Shear driven waves in the induced magnetosphere of Mars / H. . Gunell [et al.] // Plasma Phys. Control. Fusion. - 2008. - Vol. 50, Is. 7. - Ст. 74018, DOI 10.1088/0741-3335/50/7/074018. - Cited References: 27 . - ISSN 0741-3335
РУБ Physics, Fluids & Plasmas + Physics, Nuclear
Рубрики:
SOLAR-WIND INTERACTION
   KELVIN-HELMHOLTZ INSTABILITY

   MARTIAN ATMOSPHERE

   VELOCITY SHEAR

   VENUS

   PLASMA

   MHD

   IONOPAUSE

   SIMULATIONS

   BOUNDARY

Кл.слова (ненормированные):
Charged particles -- Magnetosphere -- Motion estimation -- Natural frequencies -- Plasma stability -- Shearing machines -- p ,p ,t measurements -- Computational results -- Electron densities -- Fundamental frequency (FF) -- Higher harmonics -- ion densities -- Ion velocities -- velocity shear -- Electrons
Аннотация: We present measurements of oscillations in the electron density, ion density and ion velocity in the induced magnetosphere of Mars. The fundamental frequency of the oscillations is a few millihertz, but higher harmonics are present in the spectrum. The oscillations are observed in a region where there is a velocity shear in the plasma flow. The fundamental frequency is in agreement with computational results from an ideal-MHD model. An interpretation based on velocity-shear instabilities is described.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Gunell, H.
Koepke, M.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
[Amerstorfer, U. V.
Biernat, H. K.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[Amerstorfer, U. V.
Biernat, H. K.] Graz Univ, Inst Phys, A-8010 Graz, Austria
[Nilsson, H.
Holmstrom, M.
Lundin, R.
Barabash, S.] Swedish Inst Space Phys, SE-98128 Kiruna, Sweden
[Grima, C.] Lab Planetol Grenoble, F-38041 Grenoble 9, France
[Fraenz, M.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[Winningham, J. D.
Frahm, R. A.] SW Res Inst, San Antonio, TX USA
[Sauvaud, J-A
Fedorov, A.] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France
[Erkaev, N. V.] Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036 36, Russia
ИВМ СО РАН
Department of Physics, West Virginia University, Morgantown, WV 26506-6315, United States
Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria
Institute of Physics, University of Graz, Universitatsplatz 5, A-8010 Graz, Austria
Swedish Institute of Space Physics, P.O. Box812, SE-981 28 Kiruna, Sweden
Laboratoire de Planetologie de Grenoble, BP-53, F-38041 Grenoble Cedex 9, France
Max-Planck-Institut fur Sonnensystemforschung, Max-Planck-Stra?e 2, 37191 Katlenburg-Lindau, Germany
Southwest Research Institute, San Antonio, TX 7228-0510, United States
Centre d'Etude Spatiale des Rayonnements, BP-4346, F-31028 Toulouse, France
Institute of Computational Modelling, Russian Academy of Sciences, 660036 Krasnoyarsk-36, Russian Federation

Доп.точки доступа:
Gunell, H.; Amerstorfer, U. V.; Nilsson, H.; Grima, C.; Koepke, M.; Franz, M.; Winningham, J. D.; Frahm, R. A.; Sauvaud, J. A.; Fedorov, A.; Erkaev, N. V.; Еркаев, Николай Васильевич; Biernat, H. K.; Holmstrom, M.; Lundin, R.; Barabash, S.
}
Найти похожие
6.


    Erkaev, N. V.
    Magnetic double-gradient instability and flapping waves in a current sheet / N. V. Erkaev, V. S. Semenov, H. K. Biernat // Phys. Rev. Lett. - 2007. - Vol. 99, Is. 23. - Ст. 235003, DOI 10.1103/PhysRevLett.99.235003. - Cited References: 10 . - ISSN 0031-9007
РУБ Physics, Multidisciplinary
Рубрики:
MAGNETOTAIL CURRENT SHEET
   CLUSTER

Кл.слова (ненормированные):
Magnetic fields -- Magnetic properties -- Magnetohydrodynamics -- Velocity measurement -- Current sheets -- Flapping waves -- Magnetic gradients -- Stable regions -- Electromagnetic waves
Аннотация: A new kind of magnetohydrodynamic instability and waves are analyzed for a current sheet in the presence of a small normal magnetic field component varying along the sheet. These waves and instability are related to the existence of two gradients of the tangential (B(tau)) and normal (B(n)) magnetic field components along the normal (del(n)B(tau)) and tangential (del(tau)B(n)) directions with respect to the current sheet. The current sheet can be stable or unstable if the multiplication of two magnetic gradients is positive or negative. In the stable region, the kinklike wave mode is interpreted as so-called flapping waves observed in Earth's magnetotail current sheet. The kink wave group velocity estimated for the Earth's current sheet is of the order of a few tens of kilometers per second. This is in good agreement with the observations of the flapping motions of the magnetotail current sheet.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk, Russia
Siberian Fed Univ, Krasnoyarsk, Russia
St Petersburg State Univ, Inst Phys, St Petersburg, Russia
Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria
Graz Univ, Inst Phys, Graz, Austria
ИВМ СО РАН
Institute of Computational Modelling, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Physics, State University of St. Petersburg, St. Petersburg, Russian Federation
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Institute of Physics, University of Graz, Graz, Austria

Доп.точки доступа:
Semenov, V. S.; Biernat, H. K.; Еркаев, Николай Васильевич
}
Найти похожие
7.


    Langmayr, D.
    Influence of kappa-distributed ions on the two-stream instability / D. . Langmayr, H. K. Biernat, N. V. Erkaev // Phys. Plasmas. - 2005. - Vol. 12, Is. 10. - Ст. 102103, DOI 10.1063/1.2065370. - Cited References: 30 . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
QUASI-PERPENDICULAR SHOCKS
   FIELD STREAMING INSTABILITY

   DISPERSION FUNCTION

   MIRROR INSTABILITY

   SPACE PLASMAS

   EQUILIBRIUM

Кл.слова (ненормированные):
Electromagnetic wave propagation -- Electrostatics -- Magnetism -- Magnetization -- Growth rate -- Modified two-stream instability (MTSI) -- Two-stream instability -- Plasma stability
Аннотация: This paper is the first approach for analyzing the influence of kappa-distributed particles on the modified two-stream instability (MTSI). It is assumed that the plasma consists of a magnetized Maxwellian electron contribution and unmagnetized kappa-distributed ions drifting across the electrons. Within an electrostatic approximation, the influence of the kappa parameter on the maximum growth rate of the MTSI is evaluated for the special case of parallel drift velocity and wave propagation.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
ИВМ СО РАН
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria
Institute of Computational Modelling, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation

Доп.точки доступа:
Biernat, H. K.; Erkaev, N. V.; Еркаев, Николай Васильевич
}
Найти похожие
8.


   
    Peculiarities of Alfven wave propagation along a nonuniform magnetic flux tube / N. V. Erkaev [et al.] // Phys. Plasmas. - 2005. - Vol. 12, Is. 1. - Ст. 12905, DOI 10.1063/1.1833392. - Cited References: 18 . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
HYDROMAGNETIC-WAVES
   TRANSFER EVENTS

   FIELD

   SLOW

Кл.слова (ненормированные):
Algebra -- Approximation theory -- Boundary conditions -- Electric conductivity -- Electric field effects -- Integral equations -- Magnetic flux -- Magnetohydrodynamics -- Perturbation techniques -- Polarization -- Vectors -- Velocity measurement -- Alfven wave propagation -- Axial symmetry -- Magnetic flux tubes -- Magnetosonic pulses -- Wave propagation
Аннотация: Within the framework of the assumption of large azimuthal wave numbers, the equations for Alfven and slow magnetosonic waves are obtained using frozen-in material coordinates. These equations are specified for the case of a nonuniform magnetic field with axial symmetry. Assuming a meridional polarization of the magnetic field and velocity perturbations, the effects of Alfven wave propagation are analyzed which are related to geometric characteristics of a nonuniform magnetic field: (a) A finite curvature radius of the magnetic field lines and (b) convergence of magnetic field lines. The interaction between the Alfven and magnetosonic waves is found to be strongly dependent on the curvature radius of the magnetic tube and the local plasma beta parameter. The electric field amplitude and the length scale of a wave front are found to increase very strongly in the course of the Alfven wave propagation along a converging magnetic flux tube. Also studied is a temporal decrease of the wave perturbations which is caused by dissipation at the conducting boundary. (C) 2005 American Institute of Physics.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
Krasnoyarsk State Univ, Krasnoyarsk 660041, Russia
St Petersburg State Univ, Inst Phys, St Petersburg 198504, Russia
Austrian Acad Sci, Inst Space Res, A-8042 Graz, Austria
ИВМ СО РАН
Intitute of Computational Modelling, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
State University of Krasnoyarsk, Krasnoyarsk 660041, Russian Federation
Institute of Physics, State University, St. Petersburg 198504, Russian Federation
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria

Доп.точки доступа:
Erkaev, N. V.; Еркаев, Николай Васильевич; Shaidurov, V. A.; Semenov, V. S.; Langmayr, D.; Biernat, H. K.
}
Найти похожие
9.


    Arshukova, I. L.
    Magnetohydrodynamic instability of a high magnetic shear layer with a finite curvature radius / I. L. Arshukova, N. V. Erkaev, H. K. Biernat // Phys. Plasmas. - 2002. - Vol. 9, Is. 2. - P. 401-408, DOI 10.1063/1.1432698. - Cited References: 15 . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
KELVIN-HELMHOLTZ INSTABILITY
   CURRENT SHEETS

Аннотация: This article deals with the magnetohydrodynamic instability of a thin layer which is characterized by a high magnetic shear, a constant curvature radius, and a plasma velocity shear. The magnetic field and the plasma parameters are considered to be piecewise constant inside the layer and in the regions adjacent to the layer. The plasma parameters and the magnetic field are assumed to obey the ideal incompressible magnetohydrodynamics. Fourier analysis is used to calculate small perturbations of the magnetic field and plasma parameters near the layer in linear approximation. The instability growth rate is obtained as a function of different parameters: the magnetic shear angle, the velocity direction angle, the tangential plasma velocity, the layer thickness, the wave number, and the curvature radius. The resulting instability is a mixture of interchange and Kelvin-Helmholtz instabilities on a surface with nonzero curvature. For a fixed velocity shear and curvature radius, the instability growth has a maximum in the case of antiparallel magnetic fields (maximal magnetic shear). This growth rate is an increasing function of the tangential velocity component perpendicular to the magnetic field, and a decreasing function of the velocity component along the magnetic field. The instability is stronger for smaller curvature radius. (C) 2002 American Institute of Physics.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
ИВМ СО РАН
Institute of Computational Modelling, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria

Доп.точки доступа:
Erkaev, N. V.; Еркаев, Николай Васильевич; Biernat, H. K.
}
Найти похожие
10.


   
    Rate of steady-state reconnection in an incompressible plasma / N. V. Erkaev [et al.] // Phys. Plasmas. - 2001. - Vol. 8, Is. 11. - P. 4800-4809, DOI 10.1063/1.1410112. - Cited References: 16 . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
MAGNETIC RECONNECTION
   CURRENT SHEETS

   MODEL

Аннотация: The reconnection rate is obtained for the simplest case of two-dimensional (2D) symmetric reconnection in an incompressible plasma. In the short note [Erkaev , Phys. Rev. Lett. 84, 1455 (2000)], the reconnection rate is found by matching the outer Petschek solution and the inner diffusion region solution. Here the details of the numerical simulation of the diffusion region are presented and the asymptotic procedure which is used for deriving the reconnection rate is described. The reconnection rate is obtained as a decreasing function of the diffusion region length. For a sufficiently large diffusion region scale, the reconnection rate becomes close to that obtained in the Sweet-Parker solution with the inverse square root dependence on the magnetic Reynolds number Re-m, determined for the global size of the current sheet. On the other hand, for a small diffusion region length scale, the reconnection rate turns out to be very similar to that obtained in the Petschek model with a logarithmic dependence on the magnetic Reynolds number Re-m. This means that the Petschek regime seems to be possible only in the case of a strongly localized conductivity corresponding to a small scale of the diffusion region. (C) 2001 American Institute of Physics.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036 36, Russia
Univ St Petersburg, Inst Phys, St Petersburg 198504, Russia
Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
ИВМ СО РАН
Institute of Computational Modelling, Russian Academy of Sciences, 660036 Krasnoyarsk 36, Russian Federation
Institute of Physics, University of St. Petersburg, St. Petergof 198504, Russian Federation
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria

Доп.точки доступа:
Erkaev, N. V.; Еркаев, Николай Васильевич; Semenov, V. S.; Alexeev, I. V.; Biernat, H. K.
}
Найти похожие
 1-10    11-13 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)