Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Erkaev, N. V.$<.>)
Общее количество найденных документов : 13
Показаны документы с 1 по 10
 1-10    11-13 
1.


    Arshukova, I. L.
    Magnetohydrodynamic instability of a high magnetic shear layer with a finite curvature radius / I. L. Arshukova, N. V. Erkaev, H. K. Biernat // Phys. Plasmas. - 2002. - Vol. 9, Is. 2. - P. 401-408, DOI 10.1063/1.1432698. - Cited References: 15 . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
KELVIN-HELMHOLTZ INSTABILITY
   CURRENT SHEETS

Аннотация: This article deals with the magnetohydrodynamic instability of a thin layer which is characterized by a high magnetic shear, a constant curvature radius, and a plasma velocity shear. The magnetic field and the plasma parameters are considered to be piecewise constant inside the layer and in the regions adjacent to the layer. The plasma parameters and the magnetic field are assumed to obey the ideal incompressible magnetohydrodynamics. Fourier analysis is used to calculate small perturbations of the magnetic field and plasma parameters near the layer in linear approximation. The instability growth rate is obtained as a function of different parameters: the magnetic shear angle, the velocity direction angle, the tangential plasma velocity, the layer thickness, the wave number, and the curvature radius. The resulting instability is a mixture of interchange and Kelvin-Helmholtz instabilities on a surface with nonzero curvature. For a fixed velocity shear and curvature radius, the instability growth has a maximum in the case of antiparallel magnetic fields (maximal magnetic shear). This growth rate is an increasing function of the tangential velocity component perpendicular to the magnetic field, and a decreasing function of the velocity component along the magnetic field. The instability is stronger for smaller curvature radius. (C) 2002 American Institute of Physics.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
ИВМ СО РАН
Institute of Computational Modelling, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria

Доп.точки доступа:
Erkaev, N. V.; Еркаев, Николай Васильевич; Biernat, H. K.
}
Найти похожие
2.


    Erkaev, N. V.
    Hall magnetohydrodynamic effects for current sheet flapping oscillations related to the magnetic double gradient mechanism / N. V. Erkaev, V. S. Semenov, H. K. Biernat // Phys. Plasmas. - 2010. - Vol. 17, Is. 6. - Ст. 60703, DOI 10.1063/1.3439687. - Cited References: 15. - This work is supported by RFBR (Grant Nos. N 07-05-00776-a and N 09-05-91000-ANF_a), and by Program No. 16 of RAS. Additional support is due to the Austrian "Fonds zur Forderung der wissenschaftlichen Forschung" under Project No. I 193-N16 and the "Verwaltungsstelle fur Auslandsbeziehungen" of the Austrian Academy of Sciences. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
CLUSTER OBSERVATIONS
   MAGNETOTAIL

Аннотация: Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the "kink" and "sausage" flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating along the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity. (C) 2010 American Institute of Physics. [doi:10.1063/1.3439687]

WOS,
Читать в сети ИФ
Держатели документа:
[Erkaev, N. V.] SB RAS, Inst Computat Modelling, Krasnoyarsk, Russia
[Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk, Russia
[Semenov, V. S.] St Petersburg State Univ, Inst Phys, St Petersburg, Russia
[Biernat, H. K.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[Biernat, H. K.] Graz Univ, Inst Phys, Graz, Austria
ИВМ СО РАН

Доп.точки доступа:
Semenov, V. S.; Biernat, H. K.; Еркаев, Николай Васильевич
}
Найти похожие
3.


    Erkaev, N. V.
    Ideal magnetohydrodynamic flow around a blunt body under anisotropic pressure / N. V. Erkaev, H. K. Biernat, C. J. Farrugia // Phys. Plasmas. - 2000. - Vol. 7, Is. 8. - P. 3413-3420, DOI 10.1063/1.874205. - Cited References: 23 . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
MHD FLOW
   MAGNETOSHEATH

   DEPLETION

   CLOSURE

   FLUID

   MODEL

Аннотация: The plasma flow past a blunt obstacle in an ideal magnetohydrodynamic (MHD) model is studied, taking into account the tensorial nature of the plasma pressure. Three different closure relations are explored and compared with one another. The first one is the adiabatic model proposed by Chew, Goldberger, and Low. The second closure is based on the mirror instability criterion, while the third depends on an empirical closure equation obtained from observations of solar wind flow past the Earth's magnetosphere. The latter is related with the criterion of the anisotropic ion cyclotron instability. In the presented model, the total pressure, defined as the sum of magnetic pressure and perpendicular plasma pressure, is assumed to be a known function of Cartesian coordinates. The calculation is based on the Newtonian approximation for the total pressure along the obstacle and on a quadratic behavior with distance from the obstacle along the normal direction. Profiles of magnetic field strength and plasma parameters are presented along the stagnation stream line between the shock and obstacle of an ideal plasma flow with anisotropy in thermal pressure and temperature. (C) 2000 American Institute of Physics. [S1070- 664X(00)04407-4].

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
ИВМ СО РАН

Доп.точки доступа:
Biernat, H. K.; Farrugia, C. J.; Еркаев, Николай Васильевич
}
Найти похожие
4.


    Erkaev, N. V.
    Magnetic double-gradient instability and flapping waves in a current sheet / N. V. Erkaev, V. S. Semenov, H. K. Biernat // Phys. Rev. Lett. - 2007. - Vol. 99, Is. 23. - Ст. 235003, DOI 10.1103/PhysRevLett.99.235003. - Cited References: 10 . - ISSN 0031-9007
РУБ Physics, Multidisciplinary
Рубрики:
MAGNETOTAIL CURRENT SHEET
   CLUSTER

Кл.слова (ненормированные):
Magnetic fields -- Magnetic properties -- Magnetohydrodynamics -- Velocity measurement -- Current sheets -- Flapping waves -- Magnetic gradients -- Stable regions -- Electromagnetic waves
Аннотация: A new kind of magnetohydrodynamic instability and waves are analyzed for a current sheet in the presence of a small normal magnetic field component varying along the sheet. These waves and instability are related to the existence of two gradients of the tangential (B(tau)) and normal (B(n)) magnetic field components along the normal (del(n)B(tau)) and tangential (del(tau)B(n)) directions with respect to the current sheet. The current sheet can be stable or unstable if the multiplication of two magnetic gradients is positive or negative. In the stable region, the kinklike wave mode is interpreted as so-called flapping waves observed in Earth's magnetotail current sheet. The kink wave group velocity estimated for the Earth's current sheet is of the order of a few tens of kilometers per second. This is in good agreement with the observations of the flapping motions of the magnetotail current sheet.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk, Russia
Siberian Fed Univ, Krasnoyarsk, Russia
St Petersburg State Univ, Inst Phys, St Petersburg, Russia
Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria
Graz Univ, Inst Phys, Graz, Austria
ИВМ СО РАН
Institute of Computational Modelling, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Physics, State University of St. Petersburg, St. Petersburg, Russian Federation
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Institute of Physics, University of Graz, Graz, Austria

Доп.точки доступа:
Semenov, V. S.; Biernat, H. K.; Еркаев, Николай Васильевич
}
Найти похожие
5.


    Erkaev, N. V.
    Reconnection rate for the inhomogeneous resistivity Petschek model / N. V. Erkaev, V. S. Semenov, F. . Jamitzky // Phys. Rev. Lett. - 2000. - Vol. 84, Is. 7. - P. 1455-1458, DOI 10.1103/PhysRevLett.84.1455. - Cited References: 16 . - ISSN 0031-9007
РУБ Physics, Multidisciplinary
Рубрики:
MAGNETIC RECONNECTION
   CURRENT SHEETS

Аннотация: The reconnection rate for the canonical simplest case of steady-state two-dimensional symmetric reconnection in an incompressible plasma is found by matching of an outer Petschek solution and an internal diffusion region solution. The reconnection rate obtained naturally incorporates both Sweet-Parker and Petschek regimes; while the latter is possible only for a strongly localized resistivity.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
St Petersburg State Univ, Inst Phys, St Petersburg 198904, Russia
Max Planck Inst Extraterr Phys, D-85740 Garching, Germany
ИВМ СО РАН

Доп.точки доступа:
Semenov, V. S.; Jamitzky, F.; Еркаев, Николай Васильевич
}
Найти похожие
6.


    Erkaev, N. V.
    Solution for jump conditions at fast shocks in an anisotropic magnetized plasma / N. V. Erkaev, D. F. Vogl, H. K. Biernat // J. Plasma Phys. - 2000. - Vol. 64. - P. 561-578, DOI 10.1017/S002237780000893X. - Cited References: 10 . - ISSN 0022-3778
РУБ Physics, Fluids & Plasmas
Рубрики:
MAGNETOSHEATH
Кл.слова (ненормированные):
Magnetic anisotropy -- Magnetic field effects -- Magnetohydrodynamics -- Plasma sheaths -- Plasma shock waves -- Plasma stability -- Pressure effects -- Thermal effects -- Alfven Mach number -- Anisotropic magnetized plasma -- Jump condition -- Magnetoplasma
Аннотация: We study the magnetic field and plasma parameters downstream of a fast shock as functions of normalized upstream parameters and the rate of pressure anisotropy (defined as the ratio of perpendicular to parallel pressure). We analyse two cases: with the shock (i) perpendicular and (ii) inclined with respect to the magnetic field. The relations on the fast, shock in a magnetized anisotropic plasma are solved taking into account the criteria for the mirror instability and firehose instability bounding the pressure anisotropy downstream of the shock. Our analysis shows that the parallel pressure and the parallel temperature as well as the tangential component of the velocity are the parameters that are most sensitive to the rate of pressure anisotropy. The variations of the other parameters, namely density, normal velocity, tangential component of the magnetic field, perpendicular pressure, and perpendicular temperature are much less pronounced, in particular when the perpendicular pressure exceeds the parallel pressure. The variations of all parameters increase substantially for a very low rate of anisotropy, which is bounded by the firehose instability in the case of inclined shocks. Using the criterion for mirror instability as a closure relation for the jump conditions at the fast shock, we obtain the plasma parameters and the magnetic field downstream of the shock as functions of the Alfven Mach number. For each Alfven Mach number, the criterion for mirror instability determines the minimum jumps in such parameters as density, tangential magnetic field component, parallel pressure, and temperature. and determines the maximum values of the velocity components and the perpendicular temperature. Ideal anisotropic magnetohydrodynamics (MHD) has wide applications for space plasma physics. Observations of the field and plasma behaviour in the solar wind as well as in the Earth's magnetosheath have highlighted the need for an MHD model where the plasma pressure is treated as a tensor.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
Graz Univ, Inst Geophys, A-8010 Graz, Austria
Graz Univ, Inst Theoret Phys, A-8010 Graz, Austria
ИВМ СО РАН
Institute of Computational Modelling, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Space Research Institute, Austrian Academy of Sciences, Schmiedlstra?e 6, A-8042 Graz, Austria
Institute for Geophysics, Astrophysics, and Meteorology, University of Graz, Universitatsplatz 5, 8010 Graz, Austria
Institute for Theoretical Physics, University of Graz, Universitatsplatz 5, 8010 Graz, Austria

Доп.точки доступа:
Vogl, D. F.; Biernat, H. K.; Еркаев, Николай Васильевич
}
Найти похожие
7.


   
    Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices / U. V. Amerstorfer [et al.] // Phys. Plasmas. - 2010. - Vol. 17, Is. 7. - Ст. 72901, DOI 10.1063/1.3453705. - Cited References: 26. - This work was supported by the FWF under Project No. P21051-N16 and also by the RFBR under Grant No. 09-05-91000-ANF_a. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
VENUS IONOPAUSE
   SIMULATION

   SCHEMES

   PLASMA

   FLOW

Кл.слова (ненормированные):
A-density -- Kelvin-Helmholtz instabilities -- Linear growth -- Loss rates -- Nonlinear numerical simulation -- Nonlinear phase -- Nonregular structures -- Plasma clouds -- Plasma layer -- Regular structure -- Spatial scale -- Turbulent phase -- Upper layer -- Boundary layers -- Helmholtz equation -- Ionosphere -- Plasma density -- Solar wind -- Magnetoplasma
Аннотация: Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices are about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus. (C) 2010 American Institute of Physics. [doi:10.1063/1.3453705]

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Amerstorfer, U. V.
Biernat, H. K.] Austrian Acad Sci, Inst Space Res, A-8042 Graz, Austria
[Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Erkaev, N. V.] Inst Computat Modelling, Krasnoyarsk 660036, Russia
[Taubenschuss, U.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[Biernat, H. K.] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria
ИВМ СО РАН
Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria
Siberian Federal University, 660041 Krasnoyarsk, Russian Federation
Institute of Computational Modelling, 660036 Krasnoyarsk, Russian Federation
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242-1479, United States
Institute of Physics, Karl-Franzens-University Graz, 8010 Graz, Austria

Доп.точки доступа:
Amerstorfer, U. V.; Erkaev, N. V.; Еркаев, Николай Васильевич; Taubenschuss, U.; Biernat, H. K.
}
Найти похожие
8.


   
    Kinetic Alfven wave instability in a Lorentzian dusty magnetoplasma / N. . Rubab [et al.] // Phys. Plasmas. - 2010. - Vol. 17, Is. 10. - Ст. 103704, DOI 10.1063/1.3491336. - Cited References: 54. - This work is funded by the Higher Education Commission of Pakistan under the HEC-Overseas scholarship program Grant No. Ref: 1-1/PM OS /Phase-II/Batch-I/Austria/2007/. Part of this work was done while N. V. Erkaev was at the Space Research Institute of the Austrian Academy of Sciences in Graz. This work is also supported due to the RFBR Grant No. 09-05-91000-ANF-a. Further support is due to the "Austrian Fonds zur Forderung der Wissenschaftlichen Forschung" under Grant No. P20145-N16. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
MAXWELLIAN DISTRIBUTION-FUNCTIONS
   FREQUENCY ELECTROMAGNETIC-WAVES

   SOLAR-WIND

   CHARGE FLUCTUATION

   2-STREAM INSTABILITIES

   ELECTROSTATIC MODES

   SPACE PLASMAS

   ION PLASMA

   TEMPERATURE

   PROPAGATION

Кл.слова (ненормированные):
Analytical expressions -- Dispersion relations -- Distributed streaming -- Dust acoustic -- Dust particle -- Growth rate of instabilities -- Magnetized electrons -- N-waves -- Potential theory -- Slow motion -- Streaming velocity -- Theoretical approach -- Two stream instability -- Whistler waves -- Dust -- Magnetic field effects -- Plasma waves -- Stability -- Acoustic wave propagation
Аннотация: This study presents a theoretical approach to analyze the influence of kappa distributed streaming ions and magnetized electrons on the plasma wave propagation in the presence of dust by employing two-potential theory. In particular, analytical expressions under certain conditions are derived for various modes of propagation comprising of kinetic Alfven wave streaming instability, two stream instability, and dust acoustic and whistler waves. A dispersion relation for kinetic Alfven-like streaming instability has been derived. The effects of dust particles and Lorentzian index on the growth rates and the threshold streaming velocity for the excitation of the instability are examined. The streaming velocity is observed to be destabilizing for slow motion and stabilizing for fast streaming motions. It is also observed that the presence of magnetic field and superthermal particles hinders the growth rate of instability. Possible applications to various space and astrophysical situations are discussed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3491336]

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Rubab, N.
Biernat, H. K.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[Rubab, N.
Biernat, H. K.] Graz Univ, Inst Phys, A-8010 Graz, Austria
[Erkaev, N. V.] Inst Computat Modelling, Krasnoyarsk 660036, Russia
[Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Langmayr, D.] Virtual Vehicle Competence Ctr Vif, A-8010 Graz, Austria
ИВМ СО РАН
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria
And Institute of Physics, University of Graz, Universitatplatz 5, A-8010 Graz, Austria
Institute of Computational Modelling, 660036 Krasnoyarsk, Russian Federation
Siberian Federal University, 660041 Krasnoyarsk, Russian Federation
Virtual Vehicle Competence Center (Vif), Inffeldgasse 21a, 8010 Graz, Austria

Доп.точки доступа:
Rubab, N.; Erkaev, N. V.; Еркаев, Николай Васильевич; Langmayr, D.; Biernat, H. K.
}
Найти похожие
9.


    Langmayr, D.
    Influence of kappa-distributed ions on the two-stream instability / D. . Langmayr, H. K. Biernat, N. V. Erkaev // Phys. Plasmas. - 2005. - Vol. 12, Is. 10. - Ст. 102103, DOI 10.1063/1.2065370. - Cited References: 30 . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
QUASI-PERPENDICULAR SHOCKS
   FIELD STREAMING INSTABILITY

   DISPERSION FUNCTION

   MIRROR INSTABILITY

   SPACE PLASMAS

   EQUILIBRIUM

Кл.слова (ненормированные):
Electromagnetic wave propagation -- Electrostatics -- Magnetism -- Magnetization -- Growth rate -- Modified two-stream instability (MTSI) -- Two-stream instability -- Plasma stability
Аннотация: This paper is the first approach for analyzing the influence of kappa-distributed particles on the modified two-stream instability (MTSI). It is assumed that the plasma consists of a magnetized Maxwellian electron contribution and unmagnetized kappa-distributed ions drifting across the electrons. Within an electrostatic approximation, the influence of the kappa parameter on the maximum growth rate of the MTSI is evaluated for the special case of parallel drift velocity and wave propagation.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
ИВМ СО РАН
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria
Institute of Computational Modelling, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation

Доп.точки доступа:
Biernat, H. K.; Erkaev, N. V.; Еркаев, Николай Васильевич
}
Найти похожие
10.


   
    Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection / A. . Divin [et al.] // Phys. Plasmas. - 2010. - Vol. 17, Is. 12. - Ст. 122102, DOI 10.1063/1.3521576. - Cited References: 42. - The present work is supported partially by the Onderzoekfonds KU Leuven (Research Fund KU Leuven) and by the European Commission's Seventh Framework Programme (FP7/2007-2013) under grant Agreement No. 218816 (SOTERIA project, www.soteria- space.eu). Additional support is provided by RFBR (Grant No. 09-05-91000-ANF-a). V.S.S. thanks ISSI for hospitality and financial support. The simulations were conducted on the resources of the Vlaams Supercomputer Centrum (VSC) at the Katholieke Universiteit Leuven. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas
Рубрики:
CURRENT SHEETS
   X-LINE

   PLASMA

   DISSIPATION

   FIELD

   SIMULATIONS

   ACCELERATION

   TRANSPORT

Кл.слова (ненормированные):
Analytical results -- Antiparallel configuration -- Collisionless -- Electron diffusion -- Electron population -- Electron pressures -- Magnetic reconnections -- Neutral line -- New model -- Particle-in-cell simulations -- Two particles -- Anisotropy -- Astrophysics -- Collisionless plasmas -- Computer simulation -- Diffusion -- Geophysics -- Magnetic fields -- Magnetic properties -- Plasma simulation -- Electrons
Аннотация: A new model of the electron pressure anisotropy in the electron diffusion region in collisionless magnetic reconnection is presented for the case of antiparallel configuration of magnetic fields. The plasma anisotropy is investigated as source of collisionless dissipation. By separating electrons in the vicinity of the neutral line into two broad classes of inflowing and accelerating populations, it is possible to derive a simple closure for the off-diagonal electron pressure component. The appearance of these two electron populations near the neutral line is responsible for the anisotropy and collisionless dissipation in the magnetic reconnection. Particle-in-cell simulations verify the proposed model, confirming first the presence of two particle populations and second the analytical results for the off-diagonal electron pressure component. Furthermore, test-particle calculations are performed to compare our approach with the model of electron pressure anisotropy in the inner electron diffusion region by Fujimoto and Sydora [Phys. Plasmas 16, 112309 (2009)]. (C) 2010 American Institute of Physics. [doi:10.1063/1.3521576]

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Divin, A.
Markidis, S.
Lapenta, G.] Katholieke Univ Leuven, Ctr Plasma Astrofys, B-3001 Heverlee, Belgium
[Semenov, V. S.] St Petersburg State Univ, Dept Phys, St Petersburg 198504, Russia
[Erkaev, N. V.] Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
[Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Biernat, H. K.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[Biernat, H. K.] Graz Univ, Inst Phys, A-8010 Graz, Austria
ИВМ СО РАН
Centrum voor Plasma-astrofysica, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
Department of Physics, St. Petersburg State University, St. Petersburg 198504, Russian Federation
Institute for Computational Modelling, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Krasnoyarsk 660041, Russian Federation
Space Research Institute, Austrian Academy of Sciences, Graz A-8042, Austria
Institute of Physics, University of Graz, Graz A-8010, Austria

Доп.точки доступа:
Divin, A.; Markidis, S.; Lapenta, G.; Semenov, V. S.; Erkaev, N. V.; Еркаев, Николай Васильевич; Biernat, H. K.
}
Найти похожие
 1-10    11-13 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)